• Stars
    star
    236
  • Rank 170,480 (Top 4 %)
  • Language
    R
  • License
    Other
  • Created almost 2 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A drop-in replacement for dplyr, powered by DuckDB for performance.

duckplyr

Lifecycle: experimental R-CMD-check

The goal of duckplyr is to provide a drop-in replacement for dplyr that uses DuckDB as a backend for fast operation. DuckDB is an in-process SQL OLAP database management system.

duckplyr also defines a set of generics that provide a low-level implementerโ€™s interface for dplyrโ€™s high-level user interface.

Installation

Install duckplyr from CRAN with:

install.packages("duckplyr")

You can also install the development version of duckplyr from R-universe:

install.packages('duckplyr', repos = c('https://duckdblabs.r-universe.dev', 'https://cloud.r-project.org'))

Or from GitHub with:

# install.packages("pak", repos = sprintf("https://r-lib.github.io/p/pak/stable/%s/%s/%s", .Platform$pkgType, R.Version()$os, R.Version()$arch))
pak::pak("duckdblabs/duckplyr")

Examples

library(conflicted)
library(duckplyr)
conflict_prefer("filter", "duckplyr")
#> [conflicted] Will prefer duckplyr::filter over
#> any other package.

There are two ways to use duckplyr.

  1. To enable duckplyr for individual data frames, use as_duckplyr_df() as the first step in your pipe.
  2. To enable duckplyr for the entire session, use methods_overwrite().

The examples below illustrate both methods. See also the companion demo repository for a use case with a large dataset.

Usage for individual data frames

This example illustrates usage of duckplyr for individual data frames.

Use as_duckplyr_df() to enable processing with duckdb:

out <-
  palmerpenguins::penguins %>%
  # CAVEAT: factor columns are not supported yet
  mutate(across(where(is.factor), as.character)) %>%
  as_duckplyr_df() %>%
  mutate(bill_area = bill_length_mm * bill_depth_mm) %>%
  summarize(.by = c(species, sex), mean_bill_area = mean(bill_area)) %>%
  filter(species != "Gentoo")

The result is a data frame or tibble, with its own class.

class(out)
#> [1] "duckplyr_df" "tbl_df"      "tbl"         "data.frame"
names(out)
#> [1] "species"        "sex"            "mean_bill_area"

duckdb is responsible for eventually carrying out the operations. Despite the late filter, the summary is not computed for the Gentoo species.

out %>%
  explain()
#> โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
#> โ”‚          ORDER_BY         โ”‚
#> โ”‚   โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€   โ”‚
#> โ”‚          ORDERS:          โ”‚
#> โ”‚      dataframe_42_42      โ”‚
#> โ”‚      42.___row_number ASC     โ”‚
#> โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                             
#> โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
#> โ”‚           FILTER          โ”‚
#> โ”‚   โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€   โ”‚
#> โ”‚   (species != 'Gentoo')   โ”‚
#> โ”‚   โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€   โ”‚
#> โ”‚          EC: 344          โ”‚
#> โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                             
#> โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
#> โ”‚      STREAMING_WINDOW     โ”‚
#> โ”‚   โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€   โ”‚
#> โ”‚    ROW_NUMBER() OVER ()   โ”‚
#> โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                             
#> โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
#> โ”‚          ORDER_BY         โ”‚
#> โ”‚   โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€   โ”‚
#> โ”‚          ORDERS:          โ”‚
#> โ”‚      dataframe_42_42      โ”‚
#> โ”‚      42.___row_number ASC     โ”‚
#> โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                             
#> โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
#> โ”‚       HASH_GROUP_BY       โ”‚
#> โ”‚   โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€   โ”‚
#> โ”‚             #0            โ”‚
#> โ”‚             #1            โ”‚
#> โ”‚          min(#2)          โ”‚
#> โ”‚          mean(#3)         โ”‚
#> โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                             
#> โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
#> โ”‚         PROJECTION        โ”‚
#> โ”‚   โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€   โ”‚
#> โ”‚          species          โ”‚
#> โ”‚            sex            โ”‚
#> โ”‚       ___row_number       โ”‚
#> โ”‚         bill_area         โ”‚
#> โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                             
#> โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
#> โ”‚      STREAMING_WINDOW     โ”‚
#> โ”‚   โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€   โ”‚
#> โ”‚    ROW_NUMBER() OVER ()   โ”‚
#> โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                             
#> โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
#> โ”‚         PROJECTION        โ”‚
#> โ”‚   โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€   โ”‚
#> โ”‚          species          โ”‚
#> โ”‚            sex            โ”‚
#> โ”‚         bill_area         โ”‚
#> โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                             
#> โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
#> โ”‚     R_DATAFRAME_SCAN      โ”‚
#> โ”‚   โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€   โ”‚
#> โ”‚         data.frame        โ”‚
#> โ”‚   โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€   โ”‚
#> โ”‚          species          โ”‚
#> โ”‚       bill_length_mm      โ”‚
#> โ”‚       bill_depth_mm       โ”‚
#> โ”‚            sex            โ”‚
#> โ”‚   โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€ โ”€   โ”‚
#> โ”‚          EC: 344          โ”‚
#> โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

All data frame operations are supported. Computation happens upon the first request.

out$mean_bill_area
#> materializing:
#> ---------------------
#> --- Relation Tree ---
#> ---------------------
#> Projection [species as species, sex as sex, mean_bill_area as mean_bill_area]
#>   Order [___row_number ASC]
#>     Filter [!=(species, 'Gentoo')]
#>       Projection [species as species, sex as sex, mean_bill_area as mean_bill_area, row_number() OVER () as ___row_number]
#>         Projection [species as species, sex as sex, mean_bill_area as mean_bill_area]
#>           Order [___row_number ASC]
#>             Aggregate [species, sex, min(___row_number), mean(bill_area)]
#>               Projection [species as species, island as island, bill_length_mm as bill_length_mm, bill_depth_mm as bill_depth_mm, flipper_length_mm as flipper_length_mm, body_mass_g as body_mass_g, sex as sex, "year" as year, bill_area as bill_area, row_number() OVER () as ___row_number]
#>                 Projection [species as species, island as island, bill_length_mm as bill_length_mm, bill_depth_mm as bill_depth_mm, flipper_length_mm as flipper_length_mm, body_mass_g as body_mass_g, sex as sex, "year" as year, *(bill_length_mm, bill_depth_mm) as bill_area]
#>                   r_dataframe_scan(0xdeadbeef)
#> 
#> ---------------------
#> -- Result Columns  --
#> ---------------------
#> - species (VARCHAR)
#> - sex (VARCHAR)
#> - mean_bill_area (DOUBLE)
#> 
#> [1] 770.2627 656.8523 694.9360 819.7503 984.2279

After the computation has been carried out, the results are available immediately:

out
#> # A tibble: 5 ร— 3
#>   species   sex    mean_bill_area
#>   <chr>     <chr>           <dbl>
#> 1 Adelie    male             770.
#> 2 Adelie    female           657.
#> 3 Adelie    NA               695.
#> 4 Chinstrap female           820.
#> 5 Chinstrap male             984.

Session-wide usage

This example illustrates usage of duckplyr for all data frames in the R session.

Use methods_overwrite() to enable processing with duckdb for all data frames:

methods_overwrite()
#> โ„น Overwriting dplyr methods with duckplyr
#> methods

This is the same query as above, without as_duckplyr_df():

out <-
  palmerpenguins::penguins %>%
  # CAVEAT: factor columns are not supported yet
  mutate(across(where(is.factor), as.character)) %>%
  mutate(bill_area = bill_length_mm * bill_depth_mm) %>%
  summarize(.by = c(species, sex), mean_bill_area = mean(bill_area)) %>%
  filter(species != "Gentoo")

The result is a plain tibble now:

class(out)
#> [1] "tbl_df"     "tbl"        "data.frame"

Querying the number of rows also starts the computation:

nrow(out)
#> materializing:
#> ---------------------
#> --- Relation Tree ---
#> ---------------------
#> Projection [species as species, sex as sex, mean_bill_area as mean_bill_area]
#>   Order [___row_number ASC]
#>     Filter [!=(species, 'Gentoo')]
#>       Projection [species as species, sex as sex, mean_bill_area as mean_bill_area, row_number() OVER () as ___row_number]
#>         Projection [species as species, sex as sex, mean_bill_area as mean_bill_area]
#>           Order [___row_number ASC]
#>             Aggregate [species, sex, min(___row_number), mean(bill_area)]
#>               Projection [species as species, island as island, bill_length_mm as bill_length_mm, bill_depth_mm as bill_depth_mm, flipper_length_mm as flipper_length_mm, body_mass_g as body_mass_g, sex as sex, "year" as year, bill_area as bill_area, row_number() OVER () as ___row_number]
#>                 Projection [species as species, island as island, bill_length_mm as bill_length_mm, bill_depth_mm as bill_depth_mm, flipper_length_mm as flipper_length_mm, body_mass_g as body_mass_g, sex as sex, "year" as year, *(bill_length_mm, bill_depth_mm) as bill_area]
#>                   r_dataframe_scan(0xdeadbeef)
#> 
#> ---------------------
#> -- Result Columns  --
#> ---------------------
#> - species (VARCHAR)
#> - sex (VARCHAR)
#> - mean_bill_area (DOUBLE)
#> [1] 5

Restart R, or call methods_restore() to revert to the default dplyr implementation.

methods_restore()
#> โ„น Restoring dplyr methods

dplyr is active again:

palmerpenguins::penguins %>%
  # CAVEAT: factor columns are not supported yet
  mutate(across(where(is.factor), as.character)) %>%
  mutate(bill_area = bill_length_mm * bill_depth_mm) %>%
  summarize(.by = c(species, sex), mean_bill_area = mean(bill_area)) %>%
  filter(species != "Gentoo")
#> # A tibble: 5 ร— 3
#>   species   sex    mean_bill_area
#>   <chr>     <chr>           <dbl>
#> 1 Adelie    male             770.
#> 2 Adelie    female           657.
#> 3 Adelie    NA                NA 
#> 4 Chinstrap female           820.
#> 5 Chinstrap male             984.

Telemetry

We would like to guide our efforts towards improving duckplyr, focusing on the features with the most impact. To this end, duckplyr collects and uploads telemetry data, but only if permitted by the user. The data collected contains:

  • The package version
  • The error message
  • The operation being performed, and the arguments
    • For the input data frames, only the structure is included (column types only), no column names or data

The first time the package encounters an unsupported function, data type, or operation, instructions are printed to the console.

palmerpenguins::penguins %>%
  as_duckplyr_df() %>%
  transmute(bill_area = bill_length_mm * bill_depth_mm) %>%
  head(3)
#> The duckplyr package is configured to fall back to dplyr when it encounters an
#> incompatibility. Fallback events can be collected and uploaded for analysis to
#> guide future development. By default, no data will be collected or uploaded.
#> โ„น A fallback situation just occurred. The following information would have been
#>   recorded:
#>   {"version":"0.3.1","message":"Can't convert columns of class <factor> to
#>   relational. Affected
#>   column:\n`...1`.","name":"transmute","x":{"...1":"factor","...2":"factor","...3":"numeric","...4":"numeric","...5":"integer","...6":"integer","...7":"factor","...8":"integer"},"args":{"dots":{"...9":"...3
#>   * ...4"}}}
#> โ†’ Run `duckplyr::fallback_sitrep()` to review the current settings.
#> โ†’ Run `Sys.setenv(DUCKPLYR_FALLBACK_COLLECT = 1)` to enable fallback logging,
#>   and `Sys.setenv(DUCKPLYR_FALLBACK_VERBOSE = 1)` in addition to enable
#>   printing of fallback situations to the console.
#> โ†’ Run `duckplyr::fallback_review()` to review the available reports, and
#>   `duckplyr::fallback_upload()` to upload them.
#> โ„น See `?duckplyr::fallback()` for details.
#> โ„น This message will be displayed once every eight hours.
#> materializing:
#> ---------------------
#> --- Relation Tree ---
#> ---------------------
#> Limit 3
#>   r_dataframe_scan(0xdeadbeef)
#> 
#> ---------------------
#> -- Result Columns  --
#> ---------------------
#> - bill_area (DOUBLE)
#> 
#> # A tibble: 3 ร— 1
#>   bill_area
#>       <dbl>
#> 1      731.
#> 2      687.
#> 3      725.

Extensibility

This package also provides generics, for which other packages may then implement methods.

library(duckplyr)

# Create a relational to be used by examples below
new_dfrel <- function(x) {
  stopifnot(is.data.frame(x))
  new_relational(list(x), class = "dfrel")
}
mtcars_rel <- new_dfrel(mtcars[1:5, 1:4])

# Example 1: return a data.frame
rel_to_df.dfrel <- function(rel, ...) {
  unclass(rel)[[1]]
}
rel_to_df(mtcars_rel)
#>                    mpg cyl disp  hp
#> Mazda RX4         21.0   6  160 110
#> Mazda RX4 Wag     21.0   6  160 110
#> Datsun 710        22.8   4  108  93
#> Hornet 4 Drive    21.4   6  258 110
#> Hornet Sportabout 18.7   8  360 175

# Example 2: A (random) filter
rel_filter.dfrel <- function(rel, exprs, ...) {
  df <- unclass(rel)[[1]]

  # A real implementation would evaluate the predicates defined
  # by the exprs argument
  new_dfrel(df[sample.int(nrow(df), 3, replace = TRUE), ])
}

rel_filter(
  mtcars_rel,
  list(
    relexpr_function(
      "gt",
      list(relexpr_reference("cyl"), relexpr_constant("6"))
    )
  )
)
#> [[1]]
#>                  mpg cyl disp  hp
#> Mazda RX4 Wag   21.0   6  160 110
#> Mazda RX4 Wag.1 21.0   6  160 110
#> Datsun 710      22.8   4  108  93
#> 
#> attr(,"class")
#> [1] "dfrel"      "relational"

# Example 3: A custom projection
rel_project.dfrel <- function(rel, exprs, ...) {
  df <- unclass(rel)[[1]]

  # A real implementation would evaluate the expressions defined
  # by the exprs argument
  new_dfrel(df[seq_len(min(3, ncol(df)))])
}

rel_project(
  mtcars_rel,
  list(relexpr_reference("cyl"), relexpr_reference("disp"))
)
#> [[1]]
#>                    mpg cyl disp
#> Mazda RX4         21.0   6  160
#> Mazda RX4 Wag     21.0   6  160
#> Datsun 710        22.8   4  108
#> Hornet 4 Drive    21.4   6  258
#> Hornet Sportabout 18.7   8  360
#> 
#> attr(,"class")
#> [1] "dfrel"      "relational"

# Example 4: A custom ordering (eg, ascending by mpg)
rel_order.dfrel <- function(rel, exprs, ...) {
  df <- unclass(rel)[[1]]

  # A real implementation would evaluate the expressions defined
  # by the exprs argument
  new_dfrel(df[order(df[[1]]), ])
}

rel_order(
  mtcars_rel,
  list(relexpr_reference("mpg"))
)
#> [[1]]
#>                    mpg cyl disp  hp
#> Hornet Sportabout 18.7   8  360 175
#> Mazda RX4         21.0   6  160 110
#> Mazda RX4 Wag     21.0   6  160 110
#> Hornet 4 Drive    21.4   6  258 110
#> Datsun 710        22.8   4  108  93
#> 
#> attr(,"class")
#> [1] "dfrel"      "relational"

# Example 5: A custom join
rel_join.dfrel <- function(left, right, conds, join, ...) {
  left_df <- unclass(left)[[1]]
  right_df <- unclass(right)[[1]]

  # A real implementation would evaluate the expressions
  # defined by the conds argument,
  # use different join types based on the join argument,
  # and implement the join itself instead of relaying to left_join().
  new_dfrel(dplyr::left_join(left_df, right_df))
}

rel_join(new_dfrel(data.frame(mpg = 21)), mtcars_rel)
#> Joining with `by = join_by(mpg)`
#> [[1]]
#>   mpg cyl disp  hp
#> 1  21   6  160 110
#> 2  21   6  160 110
#> 
#> attr(,"class")
#> [1] "dfrel"      "relational"

# Example 6: Limit the maximum rows returned
rel_limit.dfrel <- function(rel, n, ...) {
  df <- unclass(rel)[[1]]

  new_dfrel(df[seq_len(n), ])
}

rel_limit(mtcars_rel, 3)
#> [[1]]
#>                mpg cyl disp  hp
#> Mazda RX4     21.0   6  160 110
#> Mazda RX4 Wag 21.0   6  160 110
#> Datsun 710    22.8   4  108  93
#> 
#> attr(,"class")
#> [1] "dfrel"      "relational"

# Example 7: Suppress duplicate rows
#  (ignoring row names)
rel_distinct.dfrel <- function(rel, ...) {
  df <- unclass(rel)[[1]]

  new_dfrel(df[!duplicated(df), ])
}

rel_distinct(new_dfrel(mtcars[1:3, 1:4]))
#> [[1]]
#>             mpg cyl disp  hp
#> Mazda RX4  21.0   6  160 110
#> Datsun 710 22.8   4  108  93
#> 
#> attr(,"class")
#> [1] "dfrel"      "relational"

# Example 8: Return column names
rel_names.dfrel <- function(rel, ...) {
  df <- unclass(rel)[[1]]

  names(df)
}

rel_names(mtcars_rel)
#> [1] "mpg"  "cyl"  "disp" "hp"

More Repositories

1

ggplot2

An implementation of the Grammar of Graphics in R
R
6,496
star
2

dplyr

dplyr: A grammar of data manipulation
R
4,725
star
3

tidyverse

Easily install and load packages from the tidyverse
R
1,633
star
4

rvest

Simple web scraping for R
R
1,488
star
5

tidyr

Tidy Messy Data
R
1,369
star
6

purrr

A functional programming toolkit for R
R
1,254
star
7

readr

Read flat files (csv, tsv, fwf) into R
R
1,001
star
8

magrittr

Improve the readability of R code with the pipe
R
957
star
9

datascience-box

Data Science Course in a Box
JavaScript
937
star
10

reprex

Render bits of R code for sharing, e.g., on GitHub or StackOverflow.
R
735
star
11

lubridate

Make working with dates in R just that little bit easier
R
727
star
12

readxl

Read excel files (.xls and .xlsx) into R ๐Ÿ–‡
C++
726
star
13

glue

Glue strings to data in R. Small, fast, dependency free interpreted string literals.
R
705
star
14

dtplyr

Data table backend for dplyr
R
661
star
15

tibble

A modern re-imagining of the data frame
R
659
star
16

multidplyr

A dplyr backend that partitions a data frame over multiple processes
R
640
star
17

vroom

Fast reading of delimited files
C++
618
star
18

stringr

A fresh approach to string manipulation in R
R
594
star
19

forcats

๐Ÿˆ๐Ÿˆ๐Ÿˆ๐Ÿˆ: tools for working with categorical variables (factors)
R
551
star
20

dbplyr

Database (DBI) backend for dplyr
R
473
star
21

haven

Read SPSS, Stata and SAS files from R
C
423
star
22

modelr

Helper functions for modelling
R
401
star
23

googlesheets4

Google Spreadsheets R API (reboot of the googlesheets package)
R
354
star
24

googledrive

Google Drive R API
R
321
star
25

style

The tidyverse style guide for R code
HTML
291
star
26

design

Tidyverse design principles
R
217
star
27

tidyverse.org

Source of tidyverse.org
HTML
191
star
28

hms

A simple class for storing time-of-day values
R
137
star
29

nycflights13

An R data package containing all out-bound flights from NYC in 2013 + useful metdata
R
127
star
30

tidyversedashboard

Tidyverse activity dashboard
R
71
star
31

tidy-dev-day

Tidyverse developer day
R
69
star
32

tidyeval

A guide to tidy evaluation
CSS
55
star
33

dsbox

Companion R package to Data Science Course in a Box
R
49
star
34

tidytemplate

A pkgdown template for core tidyverse packages
SCSS
45
star
35

blob

A simple S3 class for representing BLOBs
R
44
star
36

funs

Collection of low-level functions for working with vctrs
R
34
star
37

code-review

33
star
38

website-analytics

Web analytics for tidyverse + r-lib sites
R
28
star
39

tidyups

21
star
40

ggplot2-docs

ggplot2 documentation. Auto-generated from ggplot2 sources by pkgdown
HTML
10
star