• Stars
    star
    4,675
  • Rank 8,752 (Top 0.2 %)
  • Language
    R
  • License
    Other
  • Created over 11 years ago
  • Updated 22 days ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

dplyr: A grammar of data manipulation

dplyr

CRAN status R-CMD-check Codecov test coverage

Overview

dplyr is a grammar of data manipulation, providing a consistent set of verbs that help you solve the most common data manipulation challenges:

  • mutate() adds new variables that are functions of existing variables
  • select() picks variables based on their names.
  • filter() picks cases based on their values.
  • summarise() reduces multiple values down to a single summary.
  • arrange() changes the ordering of the rows.

These all combine naturally with group_by() which allows you to perform any operation “by group”. You can learn more about them in vignette("dplyr"). As well as these single-table verbs, dplyr also provides a variety of two-table verbs, which you can learn about in vignette("two-table").

If you are new to dplyr, the best place to start is the data transformation chapter in R for Data Science.

Backends

In addition to data frames/tibbles, dplyr makes working with other computational backends accessible and efficient. Below is a list of alternative backends:

  • arrow for larger-than-memory datasets, including on remote cloud storage like AWS S3, using the Apache Arrow C++ engine, Acero.

  • dtplyr for large, in-memory datasets. Translates your dplyr code to high performance data.table code.

  • dbplyr for data stored in a relational database. Translates your dplyr code to SQL.

  • duckplyr for using duckdb on large, in-memory datasets with zero extra copies. Translates your dplyr code to high performance duckdb queries with an automatic R fallback when translation isn’t possible.

  • duckdb for large datasets that are still small enough to fit on your computer.

  • sparklyr for very large datasets stored in Apache Spark.

Installation

# The easiest way to get dplyr is to install the whole tidyverse:
install.packages("tidyverse")

# Alternatively, install just dplyr:
install.packages("dplyr")

Development version

To get a bug fix or to use a feature from the development version, you can install the development version of dplyr from GitHub.

# install.packages("pak")
pak::pak("tidyverse/dplyr")

Cheat Sheet

Usage

library(dplyr)

starwars %>% 
  filter(species == "Droid")
#> # A tibble: 6 × 14
#>   name   height  mass hair_color skin_color  eye_color birth_year sex   gender  
#>   <chr>   <int> <dbl> <chr>      <chr>       <chr>          <dbl> <chr> <chr>   
#> 1 C-3PO     167    75 <NA>       gold        yellow           112 none  masculi…
#> 2 R2-D2      96    32 <NA>       white, blue red               33 none  masculi…
#> 3 R5-D4      97    32 <NA>       white, red  red               NA none  masculi…
#> 4 IG-88     200   140 none       metal       red               15 none  masculi…
#> 5 R4-P17     96    NA none       silver, red red, blue         NA none  feminine
#> # ℹ 1 more row
#> # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
#> #   vehicles <list>, starships <list>

starwars %>% 
  select(name, ends_with("color"))
#> # A tibble: 87 × 4
#>   name           hair_color skin_color  eye_color
#>   <chr>          <chr>      <chr>       <chr>    
#> 1 Luke Skywalker blond      fair        blue     
#> 2 C-3PO          <NA>       gold        yellow   
#> 3 R2-D2          <NA>       white, blue red      
#> 4 Darth Vader    none       white       yellow   
#> 5 Leia Organa    brown      light       brown    
#> # ℹ 82 more rows

starwars %>% 
  mutate(name, bmi = mass / ((height / 100)  ^ 2)) %>%
  select(name:mass, bmi)
#> # A tibble: 87 × 4
#>   name           height  mass   bmi
#>   <chr>           <int> <dbl> <dbl>
#> 1 Luke Skywalker    172    77  26.0
#> 2 C-3PO             167    75  26.9
#> 3 R2-D2              96    32  34.7
#> 4 Darth Vader       202   136  33.3
#> 5 Leia Organa       150    49  21.8
#> # ℹ 82 more rows

starwars %>% 
  arrange(desc(mass))
#> # A tibble: 87 × 14
#>   name      height  mass hair_color skin_color eye_color birth_year sex   gender
#>   <chr>      <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
#> 1 Jabba De…    175  1358 <NA>       green-tan… orange         600   herm… mascu…
#> 2 Grievous     216   159 none       brown, wh… green, y…       NA   male  mascu…
#> 3 IG-88        200   140 none       metal      red             15   none  mascu…
#> 4 Darth Va…    202   136 none       white      yellow          41.9 male  mascu…
#> 5 Tarfful      234   136 brown      brown      blue            NA   male  mascu…
#> # ℹ 82 more rows
#> # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
#> #   vehicles <list>, starships <list>

starwars %>%
  group_by(species) %>%
  summarise(
    n = n(),
    mass = mean(mass, na.rm = TRUE)
  ) %>%
  filter(
    n > 1,
    mass > 50
  )
#> # A tibble: 9 × 3
#>   species      n  mass
#>   <chr>    <int> <dbl>
#> 1 Droid        6  69.8
#> 2 Gungan       3  74  
#> 3 Human       35  81.3
#> 4 Kaminoan     2  88  
#> 5 Mirialan     2  53.1
#> # ℹ 4 more rows

Getting help

If you encounter a clear bug, please file an issue with a minimal reproducible example on GitHub. For questions and other discussion, please use community.rstudio.com or the manipulatr mailing list.


Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

More Repositories

1

ggplot2

An implementation of the Grammar of Graphics in R
R
6,368
star
2

tidyverse

Easily install and load packages from the tidyverse
R
1,610
star
3

rvest

Simple web scraping for R
R
1,481
star
4

tidyr

Tidy Messy Data
R
1,347
star
5

purrr

A functional programming toolkit for R
R
1,235
star
6

readr

Read flat files (csv, tsv, fwf) into R
R
998
star
7

magrittr

Improve the readability of R code with the pipe
R
955
star
8

datascience-box

Data Science Course in a Box
JavaScript
908
star
9

reprex

Render bits of R code for sharing, e.g., on GitHub or StackOverflow.
R
732
star
10

lubridate

Make working with dates in R just that little bit easier
R
721
star
11

readxl

Read excel files (.xls and .xlsx) into R 🖇
C++
719
star
12

glue

Glue strings to data in R. Small, fast, dependency free interpreted string literals.
R
689
star
13

dtplyr

Data table backend for dplyr
R
656
star
14

tibble

A modern re-imagining of the data frame
R
649
star
15

multidplyr

A dplyr backend that partitions a data frame over multiple processes
R
638
star
16

vroom

Fast reading of delimited files
C++
609
star
17

stringr

A fresh approach to string manipulation in R
R
583
star
18

forcats

🐈🐈🐈🐈: tools for working with categorical variables (factors)
R
538
star
19

dbplyr

Database (DBI) backend for dplyr
R
466
star
20

haven

Read SPSS, Stata and SAS files from R
C
421
star
21

modelr

Helper functions for modelling
R
399
star
22

googlesheets4

Google Spreadsheets R API (reboot of the googlesheets package)
R
354
star
23

googledrive

Google Drive R API
R
316
star
24

style

The tidyverse style guide for R code
HTML
290
star
25

design

Tidyverse design principles
R
211
star
26

tidyverse.org

Source of tidyverse.org
HTML
189
star
27

hms

A simple class for storing time-of-day values
R
137
star
28

nycflights13

An R data package containing all out-bound flights from NYC in 2013 + useful metdata
R
124
star
29

tidyversedashboard

Tidyverse activity dashboard
R
71
star
30

tidy-dev-day

Tidyverse developer day
60
star
31

tidyeval

A guide to tidy evaluation
CSS
54
star
32

dsbox

Companion R package to Data Science Course in a Box
R
48
star
33

tidytemplate

A pkgdown template for core tidyverse packages
SCSS
46
star
34

blob

A simple S3 class for representing BLOBs
R
44
star
35

code-review

32
star
36

funs

Collection of low-level functions for working with vctrs
R
31
star
37

website-analytics

Web analytics for tidyverse + r-lib sites
R
28
star
38

tidyups

21
star
39

ggplot2-docs

ggplot2 documentation. Auto-generated from ggplot2 sources by pkgdown
HTML
10
star