• Stars
    star
    982
  • Rank 46,621 (Top 1.0 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 5 years ago
  • Updated 6 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Training neural models with structured signals.

Neural Structured Learning in TensorFlow

Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured signals in addition to feature inputs. Structure can be explicit as represented by a graph [1,2,5] or implicit as induced by adversarial perturbation [3,4].

Structured signals are commonly used to represent relations or similarity among samples that may be labeled or unlabeled. Leveraging these signals during neural network training harnesses both labeled and unlabeled data, which can improve model accuracy, particularly when the amount of labeled data is relatively small. Additionally, models trained with samples that are generated by adversarial perturbation have been shown to be robust against malicious attacks, which are designed to mislead a model's prediction or classification.

NSL generalizes to Neural Graph Learning [1] as well as to Adversarial Learning [3]. The NSL framework in TensorFlow provides the following easy-to-use APIs and tools for developers to train models with structured signals:

  • Keras APIs to enable training with graphs (explicit structure) and adversarial perturbations (implicit structure).

  • TF ops and functions to enable training with structure when using lower-level TensorFlow APIs

  • Tools to build graphs and construct graph inputs for training

The NSL framework is designed to be flexible and can be used to train any kind of neural network. For example, feed-forward, convolution, and recurrent neural networks can all be trained using the NSL framework. In addition to supervised and semi-supervised learning (a low amount of supervision), NSL can in theory be generalized to unsupervised learning. Incorporating structured signals is done only during training, so the performance of the serving/inference workflow remains unchanged. Please check out our tutorials for a practical introduction to NSL.

Getting started

You can install the prebuilt NSL pip package by running:

pip install neural-structured-learning

For more detailed instructions on how to install NSL as a package or to build it from source in various environments, please see the installation guide

Note that NSL requires a TensorFlow version of 1.15 or higher. NSL also supports TensorFlow 2.x with the exception of v2.1, which contains a bug that is incompatible with NSL.

Videos and Colab Tutorials

Get a jump-start on NSL by watching our video series on YouTube! It gives a complete overview of the framework as well as discusses several aspects of learning with structured signals.

Overall Framework Natural Graphs Synthetic Graphs Adversarial Learning

We've also created hands-on colab-based tutorials that will allow you to interactively explore NSL. Here are a few:

You can find more examples and tutorials under the examples directory.

Contributing to NSL

Contributions are welcome and highly appreciated - there are several ways to contribute to TF Neural Structured Learning:

  • Case studies: If you are interested in applying NSL, consider wrapping up your usage as a tutorial, a new dataset, or an example model that others could use for experiments and/or development. The examples directory could be a good destination for such contributions.

  • Product excellence: If you are interested in improving NSL's product excellence and developer experience, the best way is to clone this repo, make changes directly on the implementation in your local repo, and then send us pull request to integrate your changes.

  • New algorithms: If you are interested in developing new algorithms for NSL, the best way is to study the implementations of NSL libraries, and to think of extensions to the existing implementation (or alternative approaches). If you have a proposal for a new algorithm, we recommend starting by staging your project in the research directory and including a colab notebook to showcase the new features. If you develop new algorithms in your own repository, we would be happy to feature pointers to academic publications and/or repositories using NSL from this repository.

Please be sure to review the contribution guidelines.

Research

See our research directory for research projects in Neural Structured Learning:

Featured Usage

Please see the usage page to learn more about how NSL is being discussed and used in the open source community.

Issues, Questions, and Feedback

Please use GitHub issues to file issues, bugs, and feature requests. For questions, please direct them to Stack Overflow with the "nsl" tag. For feedback, please fill this form; we would love to hear from you.

Release Notes

Please see the release notes for detailed version updates.

References

[1] T. Bui, S. Ravi and V. Ramavajjala. "Neural Graph Learning: Training Neural Networks Using Graphs." WSDM 2018

[2] T. Kipf and M. Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017

[3] I. Goodfellow, J. Shlens and C. Szegedy. "Explaining and harnessing adversarial examples." ICLR 2015

[4] T. Miyato, S. Maeda, M. Koyama and S. Ishii. "Virtual Adversarial Training: a Regularization Method for Supervised and Semi-supervised Learning." ICLR 2016

[5] D. Juan, C. Lu, Z. Li, F. Peng, A. Timofeev, Y. Chen, Y. Gao, T. Duerig, A. Tomkins and S. Ravi "Graph-RISE: Graph-Regularized Image Semantic Embedding." WSDM 2020

More Repositories

1

tensorflow

An Open Source Machine Learning Framework for Everyone
C++
186,123
star
2

models

Models and examples built with TensorFlow
Python
77,049
star
3

tfjs

A WebGL accelerated JavaScript library for training and deploying ML models.
TypeScript
18,430
star
4

tensor2tensor

Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.
Python
14,693
star
5

tfjs-models

Pretrained models for TensorFlow.js
TypeScript
14,058
star
6

playground

Play with neural networks!
TypeScript
11,585
star
7

tfjs-core

WebGL-accelerated ML // linear algebra // automatic differentiation for JavaScript.
TypeScript
8,480
star
8

examples

TensorFlow examples
Jupyter Notebook
7,920
star
9

tensorboard

TensorFlow's Visualization Toolkit
TypeScript
6,686
star
10

tfjs-examples

Examples built with TensorFlow.js
JavaScript
6,553
star
11

nmt

TensorFlow Neural Machine Translation Tutorial
Python
6,315
star
12

docs

TensorFlow documentation
Jupyter Notebook
6,119
star
13

swift

Swift for TensorFlow
Jupyter Notebook
6,118
star
14

serving

A flexible, high-performance serving system for machine learning models
C++
6,068
star
15

tpu

Reference models and tools for Cloud TPUs.
Jupyter Notebook
5,214
star
16

rust

Rust language bindings for TensorFlow
Rust
4,939
star
17

lucid

A collection of infrastructure and tools for research in neural network interpretability.
Jupyter Notebook
4,611
star
18

datasets

TFDS is a collection of datasets ready to use with TensorFlow, Jax, ...
Python
4,298
star
19

probability

Probabilistic reasoning and statistical analysis in TensorFlow
Jupyter Notebook
4,053
star
20

adanet

Fast and flexible AutoML with learning guarantees.
Jupyter Notebook
3,474
star
21

hub

A library for transfer learning by reusing parts of TensorFlow models.
Python
3,467
star
22

minigo

An open-source implementation of the AlphaGoZero algorithm
C++
3,428
star
23

skflow

Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning
Python
3,181
star
24

lingvo

Lingvo
Python
2,812
star
25

agents

TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning.
Python
2,775
star
26

graphics

TensorFlow Graphics: Differentiable Graphics Layers for TensorFlow
Python
2,744
star
27

ranking

Learning to Rank in TensorFlow
Python
2,735
star
28

federated

A framework for implementing federated learning
Python
2,281
star
29

tfx

TFX is an end-to-end platform for deploying production ML pipelines
Python
2,099
star
30

privacy

Library for training machine learning models with privacy for training data
Python
1,916
star
31

tflite-micro

Infrastructure to enable deployment of ML models to low-power resource-constrained embedded targets (including microcontrollers and digital signal processors).
C++
1,887
star
32

fold

Deep learning with dynamic computation graphs in TensorFlow
Python
1,824
star
33

recommenders

TensorFlow Recommenders is a library for building recommender system models using TensorFlow.
Python
1,816
star
34

quantum

Hybrid Quantum-Classical Machine Learning in TensorFlow
Python
1,798
star
35

mlir

"Multi-Level Intermediate Representation" Compiler Infrastructure
1,720
star
36

addons

Useful extra functionality for TensorFlow 2.x maintained by SIG-addons
Python
1,690
star
37

mesh

Mesh TensorFlow: Model Parallelism Made Easier
Python
1,589
star
38

haskell

Haskell bindings for TensorFlow
Haskell
1,558
star
39

model-optimization

A toolkit to optimize ML models for deployment for Keras and TensorFlow, including quantization and pruning.
Python
1,486
star
40

workshops

A few exercises for use at events.
Jupyter Notebook
1,457
star
41

ecosystem

Integration of TensorFlow with other open-source frameworks
Scala
1,370
star
42

gnn

TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.
Python
1,320
star
43

model-analysis

Model analysis tools for TensorFlow
Python
1,250
star
44

community

Stores documents used by the TensorFlow developer community
C++
1,239
star
45

text

Making text a first-class citizen in TensorFlow.
C++
1,224
star
46

benchmarks

A benchmark framework for Tensorflow
Python
1,144
star
47

tfjs-node

TensorFlow powered JavaScript library for training and deploying ML models on Node.js.
TypeScript
1,048
star
48

similarity

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.
Python
1,008
star
49

transform

Input pipeline framework
Python
984
star
50

gan

Tooling for GANs in TensorFlow
Jupyter Notebook
907
star
51

compression

Data compression in TensorFlow
Python
849
star
52

java

Java bindings for TensorFlow
Java
818
star
53

swift-apis

Swift for TensorFlow Deep Learning Library
Swift
794
star
54

deepmath

Experiments towards neural network theorem proving
C++
779
star
55

data-validation

Library for exploring and validating machine learning data
Python
756
star
56

runtime

A performant and modular runtime for TensorFlow
C++
754
star
57

tensorrt

TensorFlow/TensorRT integration
Jupyter Notebook
736
star
58

docs-l10n

Translations of TensorFlow documentation
Jupyter Notebook
716
star
59

io

Dataset, streaming, and file system extensions maintained by TensorFlow SIG-IO
C++
698
star
60

tfjs-converter

Convert TensorFlow SavedModel and Keras models to TensorFlow.js
TypeScript
697
star
61

decision-forests

A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models in Keras.
Python
656
star
62

swift-models

Models and examples built with Swift for TensorFlow
Jupyter Notebook
644
star
63

tcav

Code for the TCAV ML interpretability project
Jupyter Notebook
612
star
64

recommenders-addons

Additional utils and helpers to extend TensorFlow when build recommendation systems, contributed and maintained by SIG Recommenders.
Cuda
590
star
65

tfjs-wechat

WeChat Mini-program plugin for TensorFlow.js
TypeScript
547
star
66

flutter-tflite

Dart
534
star
67

lattice

Lattice methods in TensorFlow
Python
519
star
68

model-card-toolkit

A toolkit that streamlines and automates the generation of model cards
Python
415
star
69

mlir-hlo

MLIR
388
star
70

tflite-support

TFLite Support is a toolkit that helps users to develop ML and deploy TFLite models onto mobile / ioT devices.
C++
374
star
71

cloud

The TensorFlow Cloud repository provides APIs that will allow to easily go from debugging and training your Keras and TensorFlow code in a local environment to distributed training in the cloud.
Python
374
star
72

custom-op

Guide for building custom op for TensorFlow
Smarty
373
star
73

tfjs-vis

A set of utilities for in browser visualization with TensorFlow.js
TypeScript
360
star
74

profiler

A profiling and performance analysis tool for TensorFlow
TypeScript
359
star
75

fairness-indicators

Tensorflow's Fairness Evaluation and Visualization Toolkit
Jupyter Notebook
341
star
76

moonlight

Optical music recognition in TensorFlow
Python
325
star
77

tfjs-tsne

TypeScript
309
star
78

estimator

TensorFlow Estimator
Python
300
star
79

embedding-projector-standalone

HTML
293
star
80

tfjs-layers

TensorFlow.js high-level layers API
TypeScript
283
star
81

build

Build-related tools for TensorFlow
Shell
275
star
82

tflite-micro-arduino-examples

C++
207
star
83

kfac

An implementation of KFAC for TensorFlow
Python
197
star
84

ngraph-bridge

TensorFlow-nGraph bridge
C++
137
star
85

profiler-ui

[Deprecated] The TensorFlow Profiler (TFProf) UI provides a visual interface for profiling TensorFlow models.
HTML
134
star
86

tensorboard-plugin-example

Python
134
star
87

tfx-addons

Developers helping developers. TFX-Addons is a collection of community projects to build new components, examples, libraries, and tools for TFX. The projects are organized under the auspices of the special interest group, SIG TFX-Addons. Join the group at http://goo.gle/tfx-addons-group
Jupyter Notebook
125
star
88

metadata

Utilities for passing TensorFlow-related metadata between tools
Python
102
star
89

networking

Enhanced networking support for TensorFlow. Maintained by SIG-networking.
C++
97
star
90

tfhub.dev

Python
75
star
91

java-ndarray

Java
71
star
92

java-models

Models in Java
Java
71
star
93

tfjs-website

WebGL-accelerated ML // linear algebra // automatic differentiation for JavaScript.
CSS
71
star
94

tfjs-data

Simple APIs to load and prepare data for use in machine learning models
TypeScript
66
star
95

tfx-bsl

Common code for TFX
Python
64
star
96

autograph

Python
50
star
97

model-remediation

Model Remediation is a library that provides solutions for machine learning practitioners working to create and train models in a way that reduces or eliminates user harm resulting from underlying performance biases.
Python
42
star
98

codelabs

Jupyter Notebook
36
star
99

tensorstore

C++
25
star
100

swift-bindings

Swift
25
star