• Stars
    star
    3,474
  • Rank 12,819 (Top 0.3 %)
  • Language
    Jupyter Notebook
  • License
    Apache License 2.0
  • Created over 6 years ago
  • Updated 12 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Fast and flexible AutoML with learning guarantees.

AdaNet

adanet_tangram_logo

Documentation Status PyPI version Travis codecov Gitter Downloads License

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet builds on recent AutoML efforts to be fast and flexible while providing learning guarantees. Importantly, AdaNet provides a general framework for not only learning a neural network architecture, but also for learning to ensemble to obtain even better models.

This project is based on the AdaNet algorithm, presented in β€œAdaNet: Adaptive Structural Learning of Artificial Neural Networks” at ICML 2017, for learning the structure of a neural network as an ensemble of subnetworks.

AdaNet has the following goals:

  • Ease of use: Provide familiar APIs (e.g. Keras, Estimator) for training, evaluating, and serving models.
  • Speed: Scale with available compute and quickly produce high quality models.
  • Flexibility: Allow researchers and practitioners to extend AdaNet to novel subnetwork architectures, search spaces, and tasks.
  • Learning guarantees: Optimize an objective that offers theoretical learning guarantees.

The following animation shows AdaNet adaptively growing an ensemble of neural networks. At each iteration, it measures the ensemble loss for each candidate, and selects the best one to move onto the next iteration. At subsequent iterations, the blue subnetworks are frozen, and only yellow subnetworks are trained:

adanet_tangram_logo

AdaNet was first announced on the Google AI research blog: "Introducing AdaNet: Fast and Flexible AutoML with Learning Guarantees".

This is not an official Google product.

Features

AdaNet provides the following AutoML features:

Example

A simple example of learning to ensemble linear and neural network models:

import adanet
import tensorflow as tf

# Define the model head for computing loss and evaluation metrics.
head = MultiClassHead(n_classes=10)

# Feature columns define how to process examples.
feature_columns = ...

# Learn to ensemble linear and neural network models.
estimator = adanet.AutoEnsembleEstimator(
    head=head,
    candidate_pool={
        "linear":
            tf.estimator.LinearEstimator(
                head=head,
                feature_columns=feature_columns,
                optimizer=...),
        "dnn":
            tf.estimator.DNNEstimator(
                head=head,
                feature_columns=feature_columns,
                optimizer=...,
                hidden_units=[1000, 500, 100])},
    max_iteration_steps=50)

estimator.train(input_fn=train_input_fn, steps=100)
metrics = estimator.evaluate(input_fn=eval_input_fn)
predictions = estimator.predict(input_fn=predict_input_fn)

Getting Started

To get you started:

Requirements

Requires Python 3.6 or above.

adanet is built on TensorFlow 2.1. It depends on bug fixes and enhancements not present in TensorFlow releases prior to 2.1. You must install or upgrade your TensorFlow package to at least 2.1:

$ pip install "tensorflow==2.1"

Installing with Pip

You can use the pip package manager to install the official adanet package from PyPi:

$ pip install adanet

Installing from Source

To install from source first you'll need to install bazel following their installation instructions.

Next clone the adanet repository:

$ git clone https://github.com/tensorflow/adanet
$ cd adanet

From the adanet root directory run the tests:

$ bazel build -c opt //...
$ python3 -m nose

Once you have verified that the tests have passed, install adanet from source as a pip package .

You are now ready to experiment with adanet.

import adanet

Citing this Work

If you use this AdaNet library for academic research, you are encouraged to cite the following paper from the ICML 2019 AutoML Workshop:

@misc{weill2019adanet,
    title={AdaNet: A Scalable and Flexible Framework for Automatically Learning Ensembles},
    author={Charles Weill and Javier Gonzalvo and Vitaly Kuznetsov and Scott Yang and Scott Yak and Hanna Mazzawi and Eugen Hotaj and Ghassen Jerfel and Vladimir Macko and Ben Adlam and Mehryar Mohri and Corinna Cortes},
    year={2019},
    eprint={1905.00080},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

License

AdaNet is released under the Apache License 2.0.

More Repositories

1

tensorflow

An Open Source Machine Learning Framework for Everyone
C++
186,123
star
2

models

Models and examples built with TensorFlow
Python
77,049
star
3

tfjs

A WebGL accelerated JavaScript library for training and deploying ML models.
TypeScript
18,430
star
4

tensor2tensor

Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.
Python
14,693
star
5

tfjs-models

Pretrained models for TensorFlow.js
TypeScript
14,058
star
6

playground

Play with neural networks!
TypeScript
11,585
star
7

tfjs-core

WebGL-accelerated ML // linear algebra // automatic differentiation for JavaScript.
TypeScript
8,480
star
8

examples

TensorFlow examples
Jupyter Notebook
7,920
star
9

tensorboard

TensorFlow's Visualization Toolkit
TypeScript
6,686
star
10

tfjs-examples

Examples built with TensorFlow.js
JavaScript
6,553
star
11

nmt

TensorFlow Neural Machine Translation Tutorial
Python
6,315
star
12

docs

TensorFlow documentation
Jupyter Notebook
6,119
star
13

swift

Swift for TensorFlow
Jupyter Notebook
6,118
star
14

serving

A flexible, high-performance serving system for machine learning models
C++
6,068
star
15

tpu

Reference models and tools for Cloud TPUs.
Jupyter Notebook
5,214
star
16

rust

Rust language bindings for TensorFlow
Rust
4,939
star
17

lucid

A collection of infrastructure and tools for research in neural network interpretability.
Jupyter Notebook
4,611
star
18

datasets

TFDS is a collection of datasets ready to use with TensorFlow, Jax, ...
Python
4,298
star
19

probability

Probabilistic reasoning and statistical analysis in TensorFlow
Jupyter Notebook
4,053
star
20

hub

A library for transfer learning by reusing parts of TensorFlow models.
Python
3,467
star
21

minigo

An open-source implementation of the AlphaGoZero algorithm
C++
3,428
star
22

skflow

Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning
Python
3,181
star
23

lingvo

Lingvo
Python
2,812
star
24

agents

TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning.
Python
2,775
star
25

graphics

TensorFlow Graphics: Differentiable Graphics Layers for TensorFlow
Python
2,744
star
26

ranking

Learning to Rank in TensorFlow
Python
2,735
star
27

federated

A framework for implementing federated learning
Python
2,281
star
28

tfx

TFX is an end-to-end platform for deploying production ML pipelines
Python
2,099
star
29

privacy

Library for training machine learning models with privacy for training data
Python
1,916
star
30

tflite-micro

Infrastructure to enable deployment of ML models to low-power resource-constrained embedded targets (including microcontrollers and digital signal processors).
C++
1,887
star
31

fold

Deep learning with dynamic computation graphs in TensorFlow
Python
1,824
star
32

recommenders

TensorFlow Recommenders is a library for building recommender system models using TensorFlow.
Python
1,816
star
33

quantum

Hybrid Quantum-Classical Machine Learning in TensorFlow
Python
1,798
star
34

mlir

"Multi-Level Intermediate Representation" Compiler Infrastructure
1,720
star
35

addons

Useful extra functionality for TensorFlow 2.x maintained by SIG-addons
Python
1,690
star
36

mesh

Mesh TensorFlow: Model Parallelism Made Easier
Python
1,589
star
37

haskell

Haskell bindings for TensorFlow
Haskell
1,558
star
38

model-optimization

A toolkit to optimize ML models for deployment for Keras and TensorFlow, including quantization and pruning.
Python
1,486
star
39

workshops

A few exercises for use at events.
Jupyter Notebook
1,457
star
40

ecosystem

Integration of TensorFlow with other open-source frameworks
Scala
1,370
star
41

gnn

TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.
Python
1,320
star
42

model-analysis

Model analysis tools for TensorFlow
Python
1,250
star
43

community

Stores documents used by the TensorFlow developer community
C++
1,239
star
44

text

Making text a first-class citizen in TensorFlow.
C++
1,224
star
45

benchmarks

A benchmark framework for Tensorflow
Python
1,144
star
46

tfjs-node

TensorFlow powered JavaScript library for training and deploying ML models on Node.js.
TypeScript
1,048
star
47

similarity

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.
Python
1,008
star
48

transform

Input pipeline framework
Python
984
star
49

neural-structured-learning

Training neural models with structured signals.
Python
982
star
50

gan

Tooling for GANs in TensorFlow
Jupyter Notebook
907
star
51

compression

Data compression in TensorFlow
Python
849
star
52

java

Java bindings for TensorFlow
Java
818
star
53

swift-apis

Swift for TensorFlow Deep Learning Library
Swift
794
star
54

deepmath

Experiments towards neural network theorem proving
C++
779
star
55

data-validation

Library for exploring and validating machine learning data
Python
756
star
56

runtime

A performant and modular runtime for TensorFlow
C++
754
star
57

tensorrt

TensorFlow/TensorRT integration
Jupyter Notebook
736
star
58

docs-l10n

Translations of TensorFlow documentation
Jupyter Notebook
716
star
59

io

Dataset, streaming, and file system extensions maintained by TensorFlow SIG-IO
C++
698
star
60

tfjs-converter

Convert TensorFlow SavedModel and Keras models to TensorFlow.js
TypeScript
697
star
61

decision-forests

A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models in Keras.
Python
656
star
62

swift-models

Models and examples built with Swift for TensorFlow
Jupyter Notebook
644
star
63

tcav

Code for the TCAV ML interpretability project
Jupyter Notebook
612
star
64

recommenders-addons

Additional utils and helpers to extend TensorFlow when build recommendation systems, contributed and maintained by SIG Recommenders.
Cuda
590
star
65

tfjs-wechat

WeChat Mini-program plugin for TensorFlow.js
TypeScript
547
star
66

flutter-tflite

Dart
534
star
67

lattice

Lattice methods in TensorFlow
Python
519
star
68

model-card-toolkit

A toolkit that streamlines and automates the generation of model cards
Python
415
star
69

mlir-hlo

MLIR
388
star
70

tflite-support

TFLite Support is a toolkit that helps users to develop ML and deploy TFLite models onto mobile / ioT devices.
C++
374
star
71

cloud

The TensorFlow Cloud repository provides APIs that will allow to easily go from debugging and training your Keras and TensorFlow code in a local environment to distributed training in the cloud.
Python
374
star
72

custom-op

Guide for building custom op for TensorFlow
Smarty
373
star
73

tfjs-vis

A set of utilities for in browser visualization with TensorFlow.js
TypeScript
360
star
74

profiler

A profiling and performance analysis tool for TensorFlow
TypeScript
359
star
75

fairness-indicators

Tensorflow's Fairness Evaluation and Visualization Toolkit
Jupyter Notebook
341
star
76

moonlight

Optical music recognition in TensorFlow
Python
325
star
77

tfjs-tsne

TypeScript
309
star
78

estimator

TensorFlow Estimator
Python
300
star
79

embedding-projector-standalone

HTML
293
star
80

tfjs-layers

TensorFlow.js high-level layers API
TypeScript
283
star
81

build

Build-related tools for TensorFlow
Shell
275
star
82

tflite-micro-arduino-examples

C++
207
star
83

kfac

An implementation of KFAC for TensorFlow
Python
197
star
84

ngraph-bridge

TensorFlow-nGraph bridge
C++
137
star
85

profiler-ui

[Deprecated] The TensorFlow Profiler (TFProf) UI provides a visual interface for profiling TensorFlow models.
HTML
134
star
86

tensorboard-plugin-example

Python
134
star
87

tfx-addons

Developers helping developers. TFX-Addons is a collection of community projects to build new components, examples, libraries, and tools for TFX. The projects are organized under the auspices of the special interest group, SIG TFX-Addons. Join the group at http://goo.gle/tfx-addons-group
Jupyter Notebook
125
star
88

metadata

Utilities for passing TensorFlow-related metadata between tools
Python
102
star
89

networking

Enhanced networking support for TensorFlow. Maintained by SIG-networking.
C++
97
star
90

tfhub.dev

Python
75
star
91

java-ndarray

Java
71
star
92

java-models

Models in Java
Java
71
star
93

tfjs-website

WebGL-accelerated ML // linear algebra // automatic differentiation for JavaScript.
CSS
71
star
94

tfjs-data

Simple APIs to load and prepare data for use in machine learning models
TypeScript
66
star
95

tfx-bsl

Common code for TFX
Python
64
star
96

autograph

Python
50
star
97

model-remediation

Model Remediation is a library that provides solutions for machine learning practitioners working to create and train models in a way that reduces or eliminates user harm resulting from underlying performance biases.
Python
42
star
98

codelabs

Jupyter Notebook
36
star
99

tensorstore

C++
25
star
100

swift-bindings

Swift
25
star