• Stars
    star
    3,180
  • Rank 14,129 (Top 0.3 %)
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created almost 7 years ago
  • Updated 8 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A small package to create visualizations of PyTorch execution graphs

PyTorchViz

A small package to create visualizations of PyTorch execution graphs and traces.

Open In Colab

Installation

Install graphviz, e.g.:

brew install graphviz

Install the package itself:

pip install torchviz

Usage

Example usage of make_dot:

model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1))

x = torch.randn(1, 8)
y = model(x)

make_dot(y.mean(), params=dict(model.named_parameters()))

image

Set show_attrs=True and show_saved=True to see what autograd saves for the backward pass. (Note that this is only available for pytorch >= 1.9.)

model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1))

x = torch.randn(1, 8)
y = model(x)

make_dot(y.mean(), params=dict(model.named_parameters()), show_attrs=True, show_saved=True)

image

Acknowledgements

The script was moved from functional-zoo where it was created with the help of Adam Paszke, Soumith Chintala, Anton Osokin, and uses bits from tensorboard-pytorch. Other contributors are @willprice, @soulitzer, @albanD.

More Repositories

1

attention-transfer

Improving Convolutional Networks via Attention Transfer (ICLR 2017)
Jupyter Notebook
1,439
star
2

wide-residual-networks

3.8% and 18.3% on CIFAR-10 and CIFAR-100
Lua
1,297
star
3

diracnets

Training Very Deep Neural Networks Without Skip-Connections
Jupyter Notebook
586
star
4

functional-zoo

PyTorch and Tensorflow functional model definitions
Jupyter Notebook
586
star
5

loadcaffe

Load Caffe networks in Torch7
Protocol Buffer
494
star
6

cvpr15deepcompare

Code and models for "Learning to Compare Image Patches via Convolutional Neural Networks"
C++
467
star
7

pyinn

CuPy fused PyTorch neural networks ops
Python
274
star
8

cifar.torch

92.45% on CIFAR-10 in Torch
Lua
174
star
9

torch-opencv-demos

Torch7+OpenCV+ConvNets
Lua
167
star
10

binary-wide-resnet

PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)
Python
124
star
11

imagine-nn

IMAGINE torch neural network routines
Lua
109
star
12

torch-caffe-binding

Use Caffe in Torch7
C++
64
star
13

imagenet-validation.torch

Fast and easy testing of imagenet models
Lua
49
star
14

neural-style-autograd

autograd version of https://github.com/jcjohnson/neural-style
Lua
44
star
15

cunnproduction

easy embeddable Torch7 networks
C++
35
star
16

nnpack.torch

Torch FFI-bindings for NNPACK
Lua
30
star
17

iterm.torch

Display images directly in iTerm2
Lua
28
star
18

openai-gemm.pytorch

PyTorch bindings for openai-gemm
Python
20
star
19

fastrcnn-models.torch

Fast-RCNN models in Torch-7 format
18
star
20

cutorch-rtc

lua apply function for cutorch
Lua
17
star
21

idiap-tutorials

Jupyter Notebook
16
star
22

functional-style-transfer

minimal implementation of style transfer
Jupyter Notebook
10
star
23

nvrtc.torch

Torch7 bindings for CUDA NVRTC (runtime compilation) library
Lua
9
star
24

imi-demos

live convolutional neural networks demos
Python
9
star
25

cunn-rtc

Runtime compiled Torch cunn modules
Lua
8
star
26

clipp.torch

Torch interface to OpenCLIPP
C++
6
star
27

examples

Python
5
star
28

libclsvm

OpenCL optimized SVM library
C++
2
star
29

infimnist.torch

Torch7 InfiMNIST ffi binding
C
1
star