• Stars
    star
    109
  • Rank 319,077 (Top 7 %)
  • Language
    Lua
  • License
    Other
  • Created almost 10 years ago
  • Updated about 7 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

IMAGINE torch neural network routines

imagine-nn

Universite Paris-Est Marne-la-Vallee IMAGINE/LIGM torch neural network routines

Following modules are here for now:

inn.SpatialStochasticPooling(kW,kH,dW,dH)
inn.SpatialSameResponseNormalization([size = 3], [alpha = 0.00005], [beta = 0.75])
inn.MeanSubtraction(mean)
inn.SpatialPyramidPooling({{w1,h1},{w2,h2},...,{wn,hn}})
inn.ROIPooling(W,H):setSpatialScale(scale)

Look at http://arxiv.org/abs/1301.3557 for inn.SpatialStochasticPooling reference, this is fully working implementation.

inn.ROIPooling is Spatial Adaptive Max Pooling layer for region proposals used in FastRCNN with bugfixes and 50 times faster in backprop. Set v2 = false to use it's old version. inn.ROIPooling expects a table on input, first argument is features in NxDxHxW where N is number of images, second argument is bounding boxes in Bx5 where B is the number of regions to pool and 5 is image id + bbox. Image id is in [1,N] range, boxes are in [x1,y1,x2,y2].

inn.SpatialSameResponseNormalization is a local response normalization in the same map in BDHW format. For details refer to https://code.google.com/p/cuda-convnet/wiki/LayerParams#Local_response_normalization_layer_(same_map)

inn.MeanSubtraction(mean) is done to subtract the Imagenet mean directly on GPU. Mean tensor is expanded to BDHW batches without using additional memory.

inn.SpatialPyramidPooling({{w1,h1},{w2,h2},...,{wn,hn}}) is a pyramid of regions obtained by using Spatial Adaptive Max Pooling with parameters (w1,h1),...,(wn,hn) in the input. The result is a fixed-sized vector of size w1*h1*...wn*hn for any input dimension. For details see http://arxiv.org/abs/1406.4729

OBSOLETE modules

The difference with inn.SpatialMax(Average)Pooling and nn.SpatialMax(Average)Pooling is that output size computed with ceil instead of floor (as in Caffe and cuda-convnet2). Also SpatialAveragePooling does true average pooling, meaning that it divides outputs by kW*kH. inn.SpatialMax(Average)Pooling(kW,kH,dW,dH) is equal to cudnn.SpatialMax(Average)Pooling(kW,kH,dW,dH):ceil().

inn.SpatialCrossResponseNormalization is local response normalization across maps in BDHW format (thanks to Caffe!). For details refer to https://code.google.com/p/cuda-convnet/wiki/LayerParams#Local_response_normalization_layer_(across_maps)

inn.SpatialMaxPooling(kW,kH,dW,dH)
-- OBSOLETE! USE nn.SpatialMaxPooling(kW,kH,dW,dH,padW,padH):ceil()
inn.SpatialAveragePooling(kW,kH,dW,dH)
-- OBSOLETE! USE nn.SpatialAveragePooling(kW,kH,dW,dH,padW,padH):ceil()
inn.SpatialCrossResponseNormalization(size, [alpha = 0.0001], [beta = 0.75], [k = 1])
-- OBSOLETE! USE nn.SpatialCrossMapLRN with the same arguments

More Repositories

1

pytorchviz

A small package to create visualizations of PyTorch execution graphs
Jupyter Notebook
3,180
star
2

attention-transfer

Improving Convolutional Networks via Attention Transfer (ICLR 2017)
Jupyter Notebook
1,439
star
3

wide-residual-networks

3.8% and 18.3% on CIFAR-10 and CIFAR-100
Lua
1,297
star
4

diracnets

Training Very Deep Neural Networks Without Skip-Connections
Jupyter Notebook
586
star
5

functional-zoo

PyTorch and Tensorflow functional model definitions
Jupyter Notebook
586
star
6

loadcaffe

Load Caffe networks in Torch7
Protocol Buffer
494
star
7

cvpr15deepcompare

Code and models for "Learning to Compare Image Patches via Convolutional Neural Networks"
C++
467
star
8

pyinn

CuPy fused PyTorch neural networks ops
Python
274
star
9

cifar.torch

92.45% on CIFAR-10 in Torch
Lua
174
star
10

torch-opencv-demos

Torch7+OpenCV+ConvNets
Lua
167
star
11

binary-wide-resnet

PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)
Python
124
star
12

torch-caffe-binding

Use Caffe in Torch7
C++
64
star
13

imagenet-validation.torch

Fast and easy testing of imagenet models
Lua
49
star
14

neural-style-autograd

autograd version of https://github.com/jcjohnson/neural-style
Lua
44
star
15

cunnproduction

easy embeddable Torch7 networks
C++
35
star
16

nnpack.torch

Torch FFI-bindings for NNPACK
Lua
30
star
17

iterm.torch

Display images directly in iTerm2
Lua
28
star
18

openai-gemm.pytorch

PyTorch bindings for openai-gemm
Python
20
star
19

fastrcnn-models.torch

Fast-RCNN models in Torch-7 format
18
star
20

cutorch-rtc

lua apply function for cutorch
Lua
17
star
21

idiap-tutorials

Jupyter Notebook
16
star
22

functional-style-transfer

minimal implementation of style transfer
Jupyter Notebook
10
star
23

nvrtc.torch

Torch7 bindings for CUDA NVRTC (runtime compilation) library
Lua
9
star
24

imi-demos

live convolutional neural networks demos
Python
9
star
25

cunn-rtc

Runtime compiled Torch cunn modules
Lua
8
star
26

clipp.torch

Torch interface to OpenCLIPP
C++
6
star
27

examples

Python
5
star
28

libclsvm

OpenCL optimized SVM library
C++
2
star
29

infimnist.torch

Torch7 InfiMNIST ffi binding
C
1
star