• Stars
    star
    141
  • Rank 251,037 (Top 6 %)
  • Language
    R
  • Created over 3 years ago
  • Updated 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Seurat meets tidyverse. The best of both worlds.

tidyseurat - part of tidytranscriptomics

Lifecycle:maturing R build status

Watch the video

Brings Seurat to the tidyverse!

website: stemangiola.github.io/tidyseurat/

Please also have a look at

  • tidyseurat for tidy single-cell RNA sequencing analysis
  • tidySummarizedExperiment for tidy bulk RNA sequencing analysis
  • tidybulk for tidy bulk RNA-seq analysis
  • nanny for tidy high-level data analysis and manipulation
  • tidygate for adding custom gate information to your tibble
  • tidyHeatmap for heatmaps produced with tidy principles

visual cue

Introduction

tidyseurat provides a bridge between the Seurat single-cell package [@butler2018integrating; @stuart2019comprehensive] and the tidyverse [@wickham2019welcome]. It creates an invisible layer that enables viewing the Seurat object as a tidyverse tibble, and provides Seurat-compatible dplyr, tidyr, ggplot and plotly functions.

Functions/utilities available

Seurat-compatible Functions Description
all
tidyverse Packages Description
dplyr All dplyr APIs like for any tibble
tidyr All tidyr APIs like for any tibble
ggplot2 ggplot like for any tibble
plotly plot_ly like for any tibble
Utilities Description
tidy Add tidyseurat invisible layer over a Seurat object
as_tibble Convert cell-wise information to a tbl_df
join_features Add feature-wise information, returns a tbl_df
aggregate_cells Aggregate cell gene-transcription abundance as pseudobulk tissue

Installation

From CRAN

install.packages("tidyseurat")

From Github (development)

devtools::install_github("stemangiola/tidyseurat")
library(dplyr)
library(tidyr)
library(purrr)
library(magrittr)
library(ggplot2)
library(Seurat)
library(tidyseurat)

Create tidyseurat, the best of both worlds!

This is a seurat object but it is evaluated as tibble. So it is fully compatible both with Seurat and tidyverse APIs.

pbmc_small = SeuratObject::pbmc_small

It looks like a tibble

pbmc_small
## # A Seurat-tibble abstraction: 80 × 15
## # �[90mFeatures=230 | Cells=80 | Active assay=RNA | Assays=RNA�[0m
##    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
##    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
##  1 ATGC… SeuratPro…         70           47 0               A             g2    
##  2 CATG… SeuratPro…         85           52 0               A             g1    
##  3 GAAC… SeuratPro…         87           50 1               B             g2    
##  4 TGAC… SeuratPro…        127           56 0               A             g2    
##  5 AGTC… SeuratPro…        173           53 0               A             g2    
##  6 TCTG… SeuratPro…         70           48 0               A             g1    
##  7 TGGT… SeuratPro…         64           36 0               A             g1    
##  8 GCAG… SeuratPro…         72           45 0               A             g1    
##  9 GATA… SeuratPro…         52           36 0               A             g1    
## 10 AATG… SeuratPro…        100           41 0               A             g1    
## # ℹ 70 more rows
## # ℹ 8 more variables: RNA_snn_res.1 <fct>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>,
## #   PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl>

But it is a Seurat object after all

pbmc_small@assays
## $RNA
## Assay data with 230 features for 80 cells
## Top 10 variable features:
##  PPBP, IGLL5, VDAC3, CD1C, AKR1C3, PF4, MYL9, GNLY, TREML1, CA2

Preliminary plots

Set colours and theme for plots.

# Use colourblind-friendly colours
friendly_cols <- c("#88CCEE", "#CC6677", "#DDCC77", "#117733", "#332288", "#AA4499", "#44AA99", "#999933", "#882255", "#661100", "#6699CC")

# Set theme
my_theme <-
  list(
    scale_fill_manual(values = friendly_cols),
    scale_color_manual(values = friendly_cols),
    theme_bw() +
      theme(
        panel.border = element_blank(),
        axis.line = element_line(),
        panel.grid.major = element_line(size = 0.2),
        panel.grid.minor = element_line(size = 0.1),
        text = element_text(size = 12),
        legend.position = "bottom",
        aspect.ratio = 1,
        strip.background = element_blank(),
        axis.title.x = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
        axis.title.y = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10))
      )
  )

We can treat pbmc_small effectively as a normal tibble for plotting.

Here we plot number of features per cell.

pbmc_small %>%
  tidyseurat::ggplot(aes(nFeature_RNA, fill = groups)) +
  geom_histogram() +
  my_theme

Here we plot total features per cell.

pbmc_small %>%
  tidyseurat::ggplot(aes(groups, nCount_RNA, fill = groups)) +
  geom_boxplot(outlier.shape = NA) +
  geom_jitter(width = 0.1) +
  my_theme

Here we plot abundance of two features for each group.

pbmc_small %>%
  join_features(features = c("HLA-DRA", "LYZ")) %>%
  ggplot(aes(groups, .abundance_RNA + 1, fill = groups)) +
  geom_boxplot(outlier.shape = NA) +
  geom_jitter(aes(size = nCount_RNA), alpha = 0.5, width = 0.2) +
  scale_y_log10() +
  my_theme

Preprocess the dataset

Also you can treat the object as Seurat object and proceed with data processing.

pbmc_small_pca <-
  pbmc_small %>%
  SCTransform(verbose = FALSE) %>%
  FindVariableFeatures(verbose = FALSE) %>%
  RunPCA(verbose = FALSE)

pbmc_small_pca
## # A Seurat-tibble abstraction: 80 × 17
## # �[90mFeatures=220 | Cells=80 | Active assay=SCT | Assays=RNA, SCT�[0m
##    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
##    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
##  1 ATGC… SeuratPro…         70           47 0               A             g2    
##  2 CATG… SeuratPro…         85           52 0               A             g1    
##  3 GAAC… SeuratPro…         87           50 1               B             g2    
##  4 TGAC… SeuratPro…        127           56 0               A             g2    
##  5 AGTC… SeuratPro…        173           53 0               A             g2    
##  6 TCTG… SeuratPro…         70           48 0               A             g1    
##  7 TGGT… SeuratPro…         64           36 0               A             g1    
##  8 GCAG… SeuratPro…         72           45 0               A             g1    
##  9 GATA… SeuratPro…         52           36 0               A             g1    
## 10 AATG… SeuratPro…        100           41 0               A             g1    
## # ℹ 70 more rows
## # ℹ 10 more variables: RNA_snn_res.1 <fct>, nCount_SCT <dbl>,
## #   nFeature_SCT <int>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>,
## #   PC_5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl>

If a tool is not included in the tidyseurat collection, we can use as_tibble to permanently convert tidyseurat into tibble.

pbmc_small_pca %>%
  as_tibble() %>%
  select(contains("PC"), everything()) %>%
  GGally::ggpairs(columns = 1:5, ggplot2::aes(colour = groups)) +
  my_theme

Identify clusters

We proceed with cluster identification with Seurat.

pbmc_small_cluster <-
  pbmc_small_pca %>%
  FindNeighbors(verbose = FALSE) %>%
  FindClusters(method = "igraph", verbose = FALSE)

pbmc_small_cluster
## # A Seurat-tibble abstraction: 80 × 19
## # �[90mFeatures=220 | Cells=80 | Active assay=SCT | Assays=RNA, SCT�[0m
##    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
##    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
##  1 ATGC… SeuratPro…         70           47 0               A             g2    
##  2 CATG… SeuratPro…         85           52 0               A             g1    
##  3 GAAC… SeuratPro…         87           50 1               B             g2    
##  4 TGAC… SeuratPro…        127           56 0               A             g2    
##  5 AGTC… SeuratPro…        173           53 0               A             g2    
##  6 TCTG… SeuratPro…         70           48 0               A             g1    
##  7 TGGT… SeuratPro…         64           36 0               A             g1    
##  8 GCAG… SeuratPro…         72           45 0               A             g1    
##  9 GATA… SeuratPro…         52           36 0               A             g1    
## 10 AATG… SeuratPro…        100           41 0               A             g1    
## # ℹ 70 more rows
## # ℹ 12 more variables: RNA_snn_res.1 <fct>, nCount_SCT <dbl>,
## #   nFeature_SCT <int>, SCT_snn_res.0.8 <fct>, seurat_clusters <fct>,
## #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
## #   tSNE_2 <dbl>

Now we can interrogate the object as if it was a regular tibble data frame.

pbmc_small_cluster %>%
  tidyseurat::count(groups, seurat_clusters)
## # A tibble: 8 × 3
##   groups seurat_clusters     n
##   <chr>  <fct>           <int>
## 1 g1     0                  17
## 2 g1     1                  14
## 3 g1     2                   9
## 4 g1     3                   4
## 5 g2     0                  13
## 6 g2     1                  12
## 7 g2     2                   6
## 8 g2     3                   5

We can identify cluster markers using Seurat.

# Identify top 10 markers per cluster
markers <-
  pbmc_small_cluster %>%
  FindAllMarkers(only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25) %>%
  group_by(cluster) %>%
  top_n(10, avg_log2FC)

# Plot heatmap
pbmc_small_cluster %>%
  DoHeatmap(
    features = markers$gene,
    group.colors = friendly_cols
  )

Reduce dimensions

We can calculate the first 3 UMAP dimensions using the Seurat framework.

pbmc_small_UMAP <-
  pbmc_small_cluster %>%
  RunUMAP(reduction = "pca", dims = 1:15, n.components = 3L)

And we can plot them using 3D plot using plotly.

pbmc_small_UMAP %>%
  plot_ly(
    x = ~`UMAP_1`,
    y = ~`UMAP_2`,
    z = ~`UMAP_3`,
    color = ~seurat_clusters,
    colors = friendly_cols[1:4]
  )

screenshot plotly

Cell type prediction

We can infer cell type identities using SingleR [@aran2019reference] and manipulate the output using tidyverse.

# Get cell type reference data
blueprint <- celldex::BlueprintEncodeData()

# Infer cell identities
cell_type_df <-
  GetAssayData(pbmc_small_UMAP, slot = 'counts', assay = "SCT") %>%
  log1p() %>%
  Matrix::Matrix(sparse = TRUE) %>%
  SingleR::SingleR(
    ref = blueprint,
    labels = blueprint$label.main,
    method = "single"
  ) %>%
  as.data.frame() %>%
  as_tibble(rownames = "cell") %>%
  select(cell, first.labels)
# Join UMAP and cell type info
pbmc_small_cell_type <-
  pbmc_small_UMAP %>%
  left_join(cell_type_df, by = "cell")

# Reorder columns
pbmc_small_cell_type %>%
  tidyseurat::select(cell, first.labels, everything())

We can easily summarise the results. For example, we can see how cell type classification overlaps with cluster classification.

pbmc_small_cell_type %>%
  count(seurat_clusters, first.labels)

We can easily reshape the data for building information-rich faceted plots.

pbmc_small_cell_type %>%

  # Reshape and add classifier column
  pivot_longer(
    cols = c(seurat_clusters, first.labels),
    names_to = "classifier", values_to = "label"
  ) %>%

  # UMAP plots for cell type and cluster
  ggplot(aes(UMAP_1, UMAP_2, color = label)) +
  geom_point() +
  facet_wrap(~classifier) +
  my_theme

We can easily plot gene correlation per cell category, adding multi-layer annotations.

pbmc_small_cell_type %>%

  # Add some mitochondrial abundance values
  mutate(mitochondrial = rnorm(n())) %>%

  # Plot correlation
  join_features(features = c("CST3", "LYZ"), shape = "wide") %>%
  ggplot(aes(CST3 + 1, LYZ + 1, color = groups, size = mitochondrial)) +
  geom_point() +
  facet_wrap(~first.labels, scales = "free") +
  scale_x_log10() +
  scale_y_log10() +
  my_theme

Nested analyses

A powerful tool we can use with tidyseurat is nest. We can easily perform independent analyses on subsets of the dataset. First we classify cell types in lymphoid and myeloid; then, nest based on the new classification

pbmc_small_nested <-
  pbmc_small_cell_type %>%
  filter(first.labels != "Erythrocytes") %>%
  mutate(cell_class = if_else(`first.labels` %in% c("Macrophages", "Monocytes"), "myeloid", "lymphoid")) %>%
  nest(data = -cell_class)

pbmc_small_nested

Now we can independently for the lymphoid and myeloid subsets (i) find variable features, (ii) reduce dimensions, and (iii) cluster using both tidyverse and Seurat seamlessly.

pbmc_small_nested_reanalysed <-
  pbmc_small_nested %>%
  mutate(data = map(
    data, ~ .x %>%
      FindVariableFeatures(verbose = FALSE) %>%
      RunPCA(npcs = 10, verbose = FALSE) %>%
      FindNeighbors(verbose = FALSE) %>%
      FindClusters(method = "igraph", verbose = FALSE) %>%
      RunUMAP(reduction = "pca", dims = 1:10, n.components = 3L, verbose = FALSE)
  ))

pbmc_small_nested_reanalysed

Now we can unnest and plot the new classification.

pbmc_small_nested_reanalysed %>%

  # Convert to tibble otherwise Seurat drops reduced dimensions when unifying data sets.
  mutate(data = map(data, ~ .x %>% as_tibble())) %>%
  unnest(data) %>%

  # Define unique clusters
  unite("cluster", c(cell_class, seurat_clusters), remove = FALSE) %>%

  # Plotting
  ggplot(aes(UMAP_1, UMAP_2, color = cluster)) +
  geom_point() +
  facet_wrap(~cell_class) +
  my_theme

Aggregating cells

Sometimes, it is necessary to aggregate the gene-transcript abundance from a group of cells into a single value. For example, when comparing groups of cells across different samples with fixed-effect models.

In tidyseurat, cell aggregation can be achieved using the aggregate_cells function.

pbmc_small %>%
  aggregate_cells(groups, assays = "RNA")
## # A tibble: 460 × 6
##    .feature  .sample    RNA groups .aggregated_cells orig.ident   
##    <chr>     <chr>    <dbl> <chr>              <int> <fct>        
##  1 MS4A1     g2       35.5  g2                    36 SeuratProject
##  2 CD79B     g2       52.8  g2                    36 SeuratProject
##  3 CD79A     g2       37.2  g2                    36 SeuratProject
##  4 HLA-DRA   g2      130.   g2                    36 SeuratProject
##  5 TCL1A     g2       29.5  g2                    36 SeuratProject
##  6 HLA-DQB1  g2       65.5  g2                    36 SeuratProject
##  7 HVCN1     g2       29.8  g2                    36 SeuratProject
##  8 HLA-DMB   g2       43.2  g2                    36 SeuratProject
##  9 LTB       g2      111.   g2                    36 SeuratProject
## 10 LINC00926 g2        9.91 g2                    36 SeuratProject
## # ℹ 450 more rows

More Repositories

1

tidyHeatmap

Draw heatmap simply using a tidy data frame
R
277
star
2

tidybulk

Brings bulk and pseudobulk transcriptomics to the tidyverse
R
158
star
3

CuratedAtlasQueryR

Tidy R query API for the harmonised and curated CELLxGENE single-cell atlas.
R
73
star
4

sccomp

Testing differences in cell type proportions from single-cell data.
R
63
star
5

tidySingleCellExperiment

Brings SingleCellExperiment objects to the tidyverse
R
34
star
6

nanny

A tidyverse suite for (pre-) machine-learning: cluster, PCA, permute, impute, rotate, redundancy, triangular, smart-subset, abundant and variable features.
R
31
star
7

bioc_2020_tidytranscriptomics

Workshop on tidytranscriptomics: Performing tidy transcriptomics analyses with tidybulk, tidyverse and tidyheatmap
R
26
star
8

tidySummarizedExperiment

Brings SummarizedExperiment to tidiverse with no side-effects
R
19
star
9

tidygate

Label elements within user drawn gates
R
18
star
10

rpharma2020_tidytranscriptomics

R
10
star
11

ppcseq

Probabilistic outlier identification for bulk RNA sequencing data
R
6
star
12

bioceurope2020_tidytranscriptomics

R
6
star
13

rladiestunis2021_tidytranscriptomics

R
5
star
14

biocasia2020_tidytranscriptomics

R
5
star
15

ABACBS2020_tidytranscriptomics

R
4
star
16

tidysc

[Not ready for third party use] A modular framework and a tidy data structure for bulk transcriptional analyses.
R
3
star
17

bioc2021_tidytranscriptomics

Dockerfile
3
star
18

single_cell_outliers

R
2
star
19

zhejiang2020

R
2
star
20

RNAseq-noise-model

R
2
star
21

singh_et_al_taurine_bone

R
2
star
22

ARMET

Algorithms for Resolving Microenvironment Transcriptomes
R
2
star
23

HPCell

Massively scalable R-native HPC-compatible pipeline for single-cell data analysis
R
1
star
24

cellsig

R
1
star
25

reducing-cost-spatial

Reduce the cost burden of spatial transcriptomics through topology subsampling
1
star