• Stars
    star
    210
  • Rank 187,585 (Top 4 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created almost 5 years ago
  • Updated 5 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Python interface for MLIR - the Multi-Level Intermediate Representation

codecov

pyMLIR: Python Interface for the Multi-Level Intermediate Representation

pyMLIR is a full Python interface to parse, process, and output MLIR files according to the syntax described in the MLIR documentation. pyMLIR supports the basic dialects and can be extended with other dialects. It uses Lark to parse the MLIR syntax, and mirrors the classes into Python classes. Custom dialects can also be implemented with a Python string-format-like syntax, or via direct parsing.

Note that the tool does not depend on LLVM or MLIR. It can be installed and invoked directly from Python.

Instructions

How to install: pip install pymlir

Requirements: Python 3.6 or newer, and the requirements in setup.py or requirements.txt. To manually install the requirements, use pip install -r requirements.txt

Problem parsing MLIR files? Run the file through LLVM's mlir-opt --mlir-print-op-generic to get the generic form of the IR (instructions on how to build/install MLIR can be found here):

$ mlir-opt file.mlir --mlir-print-op-generic > output.mlir

Found other problems parsing files? Not all dialects and modes are supported. Feel free to send us an issue or create a pull request! This is a community project and we welcome any contribution.

Usage examples

Parsing MLIR files into Python

import mlir

# Read a file path, file handle (stream), or a string
ast1 = mlir.parse_path('/path/to/file.mlir')
ast2 = mlir.parse_file(open('/path/to/file.mlir', 'r'))
ast3 = mlir.parse_string('''
module {
  func.func @toy_func(%tensor: tensor<2x3xf64>) -> tensor<3x2xf64> {
    %t_tensor = "toy.transpose"(%tensor) { inplace = true } : (tensor<2x3xf64>) -> tensor<3x2xf64>
    return %t_tensor : tensor<3x2xf64>
  }
}
''')

Inspecting MLIR files in Python

MLIR files can be inspected by dumping their contents (which will print standard MLIR code), or by using the same tools as you would with Python's ast module.

import mlir

# Dump valid MLIR files
m = mlir.parse_path('/path/to/file.mlir')
print(m.dump())

print('---')

# Dump the AST directly
print(m.dump_ast())

print('---')

# Or visit each node type by implementing visitor functions
class MyVisitor(mlir.NodeVisitor):
    def visit_Function(self, node: mlir.astnodes.Function):
        print('Function detected:', node.name.value)
        
MyVisitor().visit(m)

Transforming MLIR files

MLIR files can also be transformed with a Python-like NodeTransformer object.

import mlir

m = mlir.parse_path('/path/to/file.mlir')

# Simple node transformer that removes all operations with a result
class RemoveAllResultOps(mlir.NodeTransformer):
    def visit_Operation(self, node: mlir.astnodes.Operation):
        # There are one or more outputs, return None to remove from AST
        if len(node.result_list) > 0:
            return None
            
        # No outputs, no need to do anything
        return self.generic_visit(node)
        
m = RemoveAllResultOps().visit(m)

# Write back to file
with open('output.mlir', 'w') as fp:
    fp.write(m.dump())

Using custom dialects

Custom dialects can be written and loaded as part of the pyMLIR parser. See full tutorial here.

import mlir
from lark import UnexpectedCharacters
from .mydialect import dialect

# Try to parse as-is
try:
    m = mlir.parse_path('/path/to/matrixfile.mlir')
except UnexpectedCharacters:  # MyMatrix dialect not recognized
    pass
    
# Add dialect to the parser
m = mlir.parse_path('/path/to/matrixfile.mlir', 
                    dialects=[dialect])

# Print output back
print(m.dump_ast())

MLIR from scratch with the builder API

pyMLIR has a Builder API that can create MLIR ASTs on the fly within Python code.

import mlir.builder

builder = mlir.builder.IRBuilder()
mlirfile = builder.make_mlir_file()
module = mlirfile.default_module

with builder.goto_block(builder.make_block(module.region)):
    hello = builder.function("hello_world")
    block = builder.make_block(hello.region)
    builder.position_at_entry(block)

    x, y = builder.add_function_args(hello, [builder.F64, builder.F64], ['a', 'b'])

    adder = builder.addf(x, y, builder.F64)
    builder.ret([adder], [builder.F64])

print(mlirfile.dump())

prints:

module {
  func.func @hello_world(%a: f64, %b: f64) {
    %_pymlir_ssa = addf %a , %b : f64
    return %_pymlir_ssa : f64
  }
}

See also saxpy for a full example that registers and uses a dialect in the builder.

Built-in dialect implementations and more examples

All dialect implementations can be found in the dialects subfolder. Additional uses of the library, including a custom dialect implementation, can be found in the tests subfolder.

More Repositories

1

graph-of-thoughts

Official Implementation of "Graph of Thoughts: Solving Elaborate Problems with Large Language Models"
Python
2,096
star
2

dace

DaCe - Data Centric Parallel Programming
Python
491
star
3

gemm_hls

Scalable systolic array-based matrix-matrix multiplication implemented in Vivado HLS for Xilinx FPGAs.
C++
297
star
4

QuaRot

Code for QuaRot, an end-to-end 4-bit inference of large language models.
Python
259
star
5

ncc

Neural Code Comprehension: A Learnable Representation of Code Semantics
Python
206
star
6

hls_tutorial_examples

Examples shown as part of the tutorial "Productive parallel programming on FPGA with high-level synthesis".
C++
189
star
7

MRAG

Official Implementation of "Multi-Head RAG: Solving Multi-Aspect Problems with LLMs"
Python
161
star
8

serverless-benchmarks

SeBS: serverless benchmarking suite for automatic performance analysis of FaaS platforms.
Python
143
star
9

substation

Research and development for optimizing transformers
Python
121
star
10

pspin

PsPIN: A RISC-V in-network accelerator for flexible high-performance low-power packet processing
SystemVerilog
95
star
11

deep-weather

Deep Learning for Post-Processing Ensemble Weather Forecasts
Jupyter Notebook
86
star
12

daceml

A Data-Centric Compiler for Machine Learning
Python
81
star
13

FBLAS

BLAS implementation for Intel FPGA
C++
75
star
14

open-earth-compiler

development repository for the open earth compiler
MLIR
75
star
15

npbench

NPBench - A Benchmarking Suite for High-Performance NumPy
Python
73
star
16

ucudnn

Accelerating DNN Convolutional Layers with Micro-batches
C++
64
star
17

rFaaS

rFaaS: a high-performance FaaS platform with RDMA acceleration for low-latency invocations.
C++
48
star
18

haystack

Haystack is an analytical cache model that given a program computes the number of cache misses.
C++
42
star
19

sparsity-in-deep-learning

Bibtex for Sparsity in Deep Learning paper (https://arxiv.org/abs/2102.00554) - open for pull requests
TeX
40
star
20

mlir-dace

Data-Centric MLIR dialect
C++
37
star
21

redmark

ReDMArk: Bypassing RDMA Security Mechanisms.
C++
37
star
22

apfp

FPGA acceleration of arbitrary precision floating point computations.
C++
34
star
23

NoPFS

Near-optimal Prefetching System
32
star
24

sten

Sparsity support for PyTorch
Python
31
star
25

rapidchiplet

A toolchain for rapid design space exploration of chiplet architectures
C++
27
star
26

ens10

Scripts and examples for the ENS-10 Ensemble Prediction System machine learning dataset
Python
25
star
27

gms

GraphMineSuite (GMS): a benchmarking suite for graph mining algorithms such as graph pattern matching or graph learning
C++
25
star
28

sage

Python
24
star
29

liblsb

Rebol
23
star
30

smoe

Spatial Mixture-of-Experts
Python
19
star
31

CoRM

CoRM: Compactable Remote Memory over RDMA
C++
19
star
32

dace-vscode

Rich editor for SDFGs with included profiling and debugging, static analysis, and interactive optimization.
TypeScript
18
star
33

kafkadirect

RDMA-enabled Apache Kafka
Java
17
star
34

faaskeeper

A fully serverless implementation of the ZooKeeper coordination protocol.
Python
17
star
35

fmi

Function Message Interface (FMI): library for message-passing and collective communication for serverless functions.
C++
15
star
36

SMI

Streaming Message Interface: High-Performance Distributed Memory Programming on Reconfigurable Hardware
C++
15
star
37

stencilflow

Python
15
star
38

naos

Naos: Serialization-free RDMA networking in Java
Java
15
star
39

absinthe

Absinthe is an optimization framework to fuse and tile stencil codes in one shot
Python
14
star
40

NNCompression

Compressing weather and climate data into neural networks
Python
13
star
41

DNN-cpp-proxies

C++/MPI proxies for distributed training of deep neural networks.
C++
13
star
42

arrow-matrix

Arrow Matrix Decomposition - Communication-Efficient Distributed Sparse Matrix Multiplication
Python
13
star
43

CheckEmbed

Official Implementation of "CheckEmbed: Effective Verification of LLM Solutions to Open-Ended Tasks"
Python
12
star
44

.github

10
star
45

LogGOPSim

A LogGOPS (LogP, LogGP, LogGPS) Simulator and Simulation Framework
C
10
star
46

vldb19-distributed-locking

This repository hosts the code used for the following paper: Claude Barthels, Ingo MΓΌller, Konstantin Taranov, Torsten Hoefler, Gustavo Alonso. "Strong consistency is not hard to get: Two-Phase Locking and Two-Phase Commit on Thousands of Cores." In: PVLDB, 2020.
C++
10
star
47

SimFS

SimFS: A Virtualizing Simulation Data File System Interface
C++
8
star
48

CLaMPI

Caching Layer for MPI
C
8
star
49

FBACode

Python
8
star
50

nbody_hls

Implementation of the N^2-formulation of N-body simulation with Vivado HLS for SDAccel platforms.
C++
8
star
51

GDI-RMA

Official Implementation of "The Graph Database Interface: Scaling Online Transactional and Analytical Graph Workloads to Hundreds of Thousands of Cores"
C
8
star
52

DiffDA

Python
7
star
53

stencil_hls

Implementation of time and space-tiled stencil in Vivado HLS.
C++
7
star
54

open-earth-benchmarks

Open repository for climate and weather benchmark kernels
C++
7
star
55

cppless

C++
6
star
56

polybench-comparator

Regression and comparison tools for the Polybench benchmark
Shell
6
star
57

nevermore

The source code for the Nevermore paper at ACM CCS'22
C++
6
star
58

foMPI-NA

C
6
star
59

perf-taint

Taint-based program analysis framework for empirical performance modeling.
LLVM
5
star
60

streamingsched

Streaming Task Scheduling
Python
5
star
61

faaskeeper-python

Python client library for FaaSKeeper, the serverless ZooKeeeper.
Python
5
star
62

muliticast-based-allgather

C
4
star
63

smat

Code for High Performance Unstructured SpMM Computation Using Tensor Cores
Emacs Lisp
4
star
64

libNBC

Shell
3
star
65

climetlab-maelstrom-ens10

MAELSTROM ENS10 dataset plugin for CliMetLab
Jupyter Notebook
3
star
66

dace-webclient

Web-based SDFG viewer for DaCe
JavaScript
3
star
67

spatial-collectives

Optimized communication collectives for the Cerebras waferscale engine
Python
3
star
68

libhear

C++
3
star
69

TCPunch

C++
3
star
70

LGSxNS3

Python
2
star
71

cppless-clang

2
star
72

c2dace

C
2
star
73

probgraph

Emacs Lisp
2
star
74

LogGOPSim2

C++
2
star
75

fflib

C
2
star
76

serverless-benchmarks-data

TeX
2
star
77

rivets

C
2
star
78

conflux

C++
1
star
79

fuzzyflow-artifact

Computational artifacts for the FuzzyFlow publication
Shell
1
star
80

SAILOR

Python
1
star
81

praas-benchmarks

Jupyter Notebook
1
star
82

HTSIM-old

C++
1
star
83

faas-profiler

Python
1
star
84

UPM

User-guided Page Merging: Memory Deduplication for Serverless
C
1
star
85

f2dace-artifact

Fortran
1
star