Business-Analytics
Course homepage for "Business Analytics" @Korea University
Notice
-
๋น๋๋ฉด ๊ธฐ๋ง๊ณ ์ฌ ์ค์
- ์ผ์: 2020๋ 12์ 22์ผ(ํ) ์คํ 3์ 30๋ถ~5์ 30๋ถ (120๋ถ)
- ํ์: Google Meet ํ์ ๋งํฌ์ ์ ์ํ์ฌ ์ํ์๊ฐ ๋์ ๋น๋์ค๋ฅผ ์ผ ์ํ์์ ์ํ ์ค์
- ์ํ ๋ฐฉ์: Open Slide + Cheating Sheet (A4์ฉ์ง ์๋ค๋ก 3์ฅ, ์ด 6ํ์ด์ง, ๋ณธ์ธ์ด ์ง์ ํ๊ธฐํ ์๋ฃ๋ง ์ธ์ )ย
- ๋งํฌ ๋ฐ ์ํ ๋ฌธ์ ๋ ๋น์ผ ์คํ 2์ 25๋ถ์ ๋ธ๋๋ณด๋์ ์ด๋ฉ์ผ ๊ธฐ๋ฅ์ ์ด์ฉํ์ฌ ์ ์ก
- ๊ธฐ๋ง๊ณ ์ฌ ์ ์ถ ๋ฐฉ์
- ์ํ์ด ์ข ๋ฃ๋๋ 5์ 30๋ถ ์์ ์์ ๋ต์์ง(A4 ๋จ๋ฉด)๋ฅผ ํ์ด์ง๋ณ๋ก ํด๋ํฐ์ผ๋ก ์ดฌ์ํ์ฌ ๋ด๋น๊ต์ ์ด๋ฉ์ผ([email protected])๋ก ์ ์ก (์ดฌ์ ๋ฐ ๋ฐ์ก์๊ฐ ๊ณ ๋ คํ์ฌ ์ด๋ฉ์ผ ๋ฐ์ก์๊ฐ ๊ธฐ์ค 5์ 35๋ถ๊น์ง ์ธ์ )
- 12์ 25์ผ(๊ธ) ์์ ๊น์ง Cheating Sheet์ ๋ต์์ง ์๋ณธ์ ์คํ ์ดํ๋ฌ๋ก ๊ฒฐํฉํ์ฌ ๋ด๋น๊ต์ ์ฐ๊ตฌ์ค๋ก ์ ์ถ(์ฐฝ์๊ด 801Aํธ, ๋ถ์ฌ์ค์ผ ๊ฒฝ์ฐ ๋ฌธ ์๋๋ก ๋ฐ์ด๋ฃ๊ธฐ)
-
์ ํ๋ธ ๊ฐ์์์ ์์ฝ ๋ฐ ๋ ผ๋ฌธ ์ฌํ ํฌ์คํ ๊ธฐํ ๊ณต์ง
- ์ ํ๋ธ ๊ฐ์์์ ์์ฝ ๋ฐ ๋ ผ๋ฌธ ์ฌํ ํฌ์คํ ์ 12์ 27์ผ(์ผ) 23:59๋ถ๊น์ง ์ ์ถ๋ ๋ฒ์ ์ ๋ํด์๋ง ์ธ์ ํ๋๋ก ํ๊ฒ ์ต๋๋ค.
- Syllabus (Document, Slide, Video)
- Tutorial resources (2015)
- Tutorial resources (2016)
Schedule
Topic 1: Dimensionality Reduction
- Dimensionality Reduction: Overview (Slide, Video)
- Supervised Methods 1: Forward selection, Backward elimination, Stepwise selection (Slide, Video)
- Supervised Methods 2: Genetic algorithm (Slide, Video)
- Unsupervised Method (Linear embedding) 1: Principal component analysis (PCA) (Slide, Video)
- Unsupervised Method (Linear embedding) 2: Multi-dimensional scaling (MDS) (Slide, Video)
- Unsupervised Method (Nonlinear embedding) 1: ISOMAP, LLE (Slide, Video)
- Unsupervised Method (Nonlinear embedding) 2: t-SNE (Slide, Video)
- Tutorial 1: Supervised Method
- Tutorial 2: Unsupervised Method (Linear embedding)
- Tutorial 3: Unsupervised Method (Nonlinear embedding)
Topic 2: Kernel-based Learning
- Theoretical foundation (Slide, Video)
- Support Vector Machine (SVM) - Linear & Hard Margin (Slide, Video)
- Support Vector Machine (SVM) - Soft Margin (Slide, Video)
- Support Vector Regression (SVR) (Slide, Video)
- Kernel Fisher Discriminant Analysis (KFDA) (Slide, Video)
- Kernel Principal Component Analysis (KPCA) (Slide, Video)
- Tutorial 4: Support Vector Machine (SVM)
- Tutorial 5: Support Vector Regression (SVR)
- Tutorial 6: Kernel Fisher Discriminant Analysis (KFDA)
- Tutorial 7: Kernel Principal Component Analysis (KPCA)
Topic 3: Anomaly Detection
- Anomaly Detection: Overview (Slide, Video)
- Density-based Anomaly Detection Part 1: Gaussian Density Estimation & Mixture of Gaussian Density Estimation (Slide, Video)
- Density-based Anomaly Detection Part 2: Parzen Window Density Estimation (Slide, Video)
- Density-based Anomaly Detection Part 3: Local Outlier Factor (LOF) (Slide, Video)
- Distance/Reconstruction-based Anomaly Detection (Slide, Video)
- Model-based Anomaly Detection Part 1: Auto-Encoder, 1-SVM, and Support Vector Data Description (SVDD) (Slide, Video)
- Model-based Anomaly Detection Part 2: Isolation Forest and Extended Isolation Forest (Slide, Video)
- (Optional) Anomaly Detection with Generative Adversarial Network (Video, presented by ๊น์ฐฝ์ฝ)
- (Optional) Graph-based Anomaly Detection (Video, presented by ๊นํ์ฐ)
- Tutorial 8: Density-based novelty detection
- Tutorial 9: Distance/Reconstruction-based novelty detection
- Tutorial 10: Model-based novelty detection
Topic 4: Ensemble Learning
- Overview (Slide, Video)
- Bias-Variance Decomposition (Slide, Video)
- Bagging (Slide, Video)
- Bagging: Random Forests (Slide, Video)
- Boosting 1 - Adaptive Boosting (AdaBoost) (Slide, Video)
- Boosting 2 - Gradient Boosting Machine (GBM) (Slide, Video)
- Boosting 3 - XGBoost (Slide, Video)
- Boosting 4 - Light GBM (Slide, Video)
- Boosting 5 - CatBoost (Slide, Video)
- (Optional) XGBoost (Video, presented by ์คํ์)
- (Optional) CatBoost (Video, presented by ๊น์ง๋)
- Tutorial 11: Bagging
- Tutorial 12: AdaBoost, Gradient Boosting
- Tutorial 13: Random Forests, Decision Jungle (์ํฌ์ฐฌ, ๊ถ์ํ)
Topic 5: Semi-supervised Learning
- SSL: Overview (Slide, Video)
- SSL: Self-training & Co-Training (Multi-view algorithm) (Slide, Video)
- SSL: Graph-based SSL (Slide, Video)
- SSL: Generative Models (Slide, Video)
- (Optional) Text Augmentation (Video, presented by ๊น์ ํฌ)
- (Optional) Semi-supervised learning with ladder network (Video, presented by ์์ฐ์)
- (Optional) MixMatch (Video, presented by ์ด์ ํ)
- (Optional) Remixaatch & FixMatch (Video, presented by ์ด์ ํ)
- Tutorial 14: Self-training
- Tutorial 15: Generative models
- Tutorial 16: Graph-based SSL
- Tutorial 17: Multi-view algorithm (Co-training)