• Stars
    star
    377
  • Rank 113,535 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created about 6 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorch implementation for semantic segmentation (DeepLabV3+, UNet, etc.)

PytorchSegmentation

This repository implements general network for semantic segmentation.
You can train various networks like DeepLabV3+, PSPNet, UNet, etc., just by writing the config file.

DeepLabV3+

Pretrained model

You can run pretrained model converted from official tensorflow model.

DeepLabV3+(Xception65+ASPP)

$ cd tf_model
$ wget http://download.tensorflow.org/models/deeplabv3_cityscapes_train_2018_02_06.tar.gz
$ tar -xvf deeplabv3_cityscapes_train_2018_02_06.tar.gz
$ cd ../src
$ python -m converter.convert_xception65 ../tf_model/deeplabv3_cityscapes_train/model.ckpt 19 ../model/cityscapes_deeplab_v3_plus/model.pth

Then you can test the performance of trained network.

$ python eval_cityscapes.py --tta

mIoU of cityscapes

$ pip install cityscapesScripts
$ export CITYSCAPES_RESULTS=../output/cityscapes_val/cityscapes_deeplab_v3_plus_tta
$ export CITYSCAPES_DATASET=../data/cityscapes
$ csEvalPixelLevelSemanticLabeling 
classes          IoU      nIoU
--------------------------------
road          : 0.984      nan
sidewalk      : 0.866      nan
building      : 0.931      nan
wall          : 0.626      nan
fence         : 0.635      nan
pole          : 0.668      nan
traffic light : 0.698      nan
traffic sign  : 0.800      nan
vegetation    : 0.929      nan
terrain       : 0.651      nan
sky           : 0.954      nan
person        : 0.832    0.645
rider         : 0.644    0.452
car           : 0.956    0.887
truck         : 0.869    0.420
bus           : 0.906    0.657
train         : 0.834    0.555
motorcycle    : 0.674    0.404
bicycle       : 0.783    0.605
--------------------------------
Score Average : 0.802    0.578
--------------------------------


categories       IoU      nIoU
--------------------------------
flat          : 0.988      nan
construction  : 0.937      nan
object        : 0.729      nan
nature        : 0.931      nan
sky           : 0.954      nan
human         : 0.842    0.667
vehicle       : 0.944    0.859
--------------------------------
Score Average : 0.904    0.763
--------------------------------

MobilenetV2

$ cd tf_model
$ wget http://download.tensorflow.org/models/deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz
$ tar -xvf deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz
$ cd ../src
$ python -m converter.convert_mobilenetv2 ../tf_model/deeplabv3_mnv2_cityscapes_train/model.ckpt 19 ../model/cityscapes_mobilnetv2/model.pth

How to train

In order to train model, you have only to setup config file.
For example, write config file as below and save it as config/pascal_unet_res18_scse.yaml.

Net:
  enc_type: 'resnet18'
  dec_type: 'unet_scse'
  num_filters: 8
  pretrained: True
Data:
  dataset: 'pascal'
  target_size: (512, 512)
Train:
  max_epoch: 20
  batch_size: 2
  fp16: True
  resume: False
  pretrained_path:
Loss:
  loss_type: 'Lovasz'
  ignore_index: 255
Optimizer:
  mode: 'adam'
  base_lr: 0.001
  t_max: 10

Then you can train this model by:

$ python train.py ../config/pascal_unet_res18_scse.yaml

Dataset

Directory tree

.
β”œβ”€β”€ config
β”œβ”€β”€ data
β”‚Β Β  β”œβ”€β”€ cityscapes
β”‚   β”‚Β Β  β”œβ”€β”€ gtFine
β”‚   β”‚Β Β  └── leftImg8bit
β”‚Β Β  └── pascal_voc_2012
β”‚        └── VOCdevkit
β”‚            └── VOC2012
β”‚                β”œβ”€β”€ JPEGImages
β”‚                β”œβ”€β”€ SegmentationClass
β”‚                └── SegmentationClassAug
β”œβ”€β”€ logs
β”œβ”€β”€ model
└── src
    β”œβ”€β”€ dataset
    β”œβ”€β”€ logger
    β”œβ”€β”€ losses
    β”‚Β Β  β”œβ”€β”€ binary
    β”‚Β Β  └── multi
    β”œβ”€β”€ models
    └── utils

Environments

  • OS: Ubuntu18.04
  • python: 3.7.0
  • pytorch: 1.0.0
  • pretrainedmodels: 0.7.4
  • albumentations: 0.1.8

if you want to train models in fp16

  • NVIDIA/apex: 0.1

Reference

Encoder

Decoder

SCSE

IBN

OC

PSP

ASPP