• Stars
    star
    384
  • Rank 111,726 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 2 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Circular visualization in Python (Circos Plot, Chord Diagram)

pyCirclize: Circular visualization in Python

Python3 OS License Latest PyPI version conda-forge CI

Table of contents

Overview

pyCirclize is a circular visualization python package implemented based on matplotlib. This package is developed for the purpose of easily and beautifully plotting circular figure such as Circos Plot and Chord Diagram in Python. In addition, useful genome and phylogenetic tree visualization methods for the bioinformatics field are also implemented. pyCirclize was inspired by circlize and pyCircos. More detailed documentation is available here.

pyCirclize_gallery.png
Fig.1 pyCirclize example plot gallery

Installation

Python 3.8 or later is required for installation.

Install PyPI package:

pip install pycirclize

Install conda-forge package:

conda install -c conda-forge pycirclize

API Usage

API usage is described in each of the following sections in the document.

Code Example

1. Circos Plot

from pycirclize import Circos
import numpy as np
np.random.seed(0)

# Initialize Circos sectors
sectors = {"A": 10, "B": 15, "C": 12, "D": 20, "E": 15}
circos = Circos(sectors, space=5)

for sector in circos.sectors:
    # Plot sector name
    sector.text(f"Sector: {sector.name}", r=110, size=15)
    # Create x positions & random y values
    x = np.arange(sector.start, sector.end) + 0.5
    y = np.random.randint(0, 100, len(x))
    # Plot lines
    track1 = sector.add_track((80, 100), r_pad_ratio=0.1)
    track1.xticks_by_interval(interval=1)
    track1.axis()
    track1.line(x, y)
    # Plot points 
    track2 = sector.add_track((55, 75), r_pad_ratio=0.1)
    track2.axis()
    track2.scatter(x, y)
    # Plot bars
    track3 = sector.add_track((30, 50), r_pad_ratio=0.1)
    track3.axis()
    track3.bar(x, y)

# Plot links 
circos.link(("A", 0, 3), ("B", 15, 12))
circos.link(("B", 0, 3), ("C", 7, 11), color="skyblue")
circos.link(("C", 2, 5), ("E", 15, 12), color="chocolate", direction=1)
circos.link(("D", 3, 5), ("D", 18, 15), color="lime", ec="black", lw=0.5, hatch="//", direction=2)
circos.link(("D", 8, 10), ("E", 2, 8), color="violet", ec="red", lw=1.0, ls="dashed")

circos.savefig("example01.png")

example01.png

2. Circos Plot (Genomics)

from pycirclize import Circos
from pycirclize.utils import fetch_genbank_by_accid
from pycirclize.parser import Genbank

# Download `NC_002483` E.coli plasmid genbank
gbk_fetch_data = fetch_genbank_by_accid("NC_002483")
gbk = Genbank(gbk_fetch_data)

# Initialize Circos instance with genome size
circos = Circos(sectors={gbk.name: gbk.range_size})
circos.text(f"Escherichia coli K-12 plasmid F\n\n{gbk.name}", size=14)
circos.rect(r_lim=(90, 100), fc="lightgrey", ec="none", alpha=0.5)
sector = circos.sectors[0]

# Plot forward strand CDS
f_cds_track = sector.add_track((95, 100))
f_cds_feats = gbk.extract_features("CDS", target_strand=1)
f_cds_track.genomic_features(f_cds_feats, plotstyle="arrow", fc="salmon", lw=0.5)

# Plot reverse strand CDS
r_cds_track = sector.add_track((90, 95))
r_cds_feats = gbk.extract_features("CDS", target_strand=-1)
r_cds_track.genomic_features(r_cds_feats, plotstyle="arrow", fc="skyblue", lw=0.5)

# Plot 'gene' qualifier label if exists
labels, label_pos_list = [], []
for feat in gbk.extract_features("CDS"):
    start = int(str(feat.location.start))
    end = int(str(feat.location.end))
    label_pos = (start + end) / 2
    gene_name = feat.qualifiers.get("gene", [None])[0]
    if gene_name is not None:
        labels.append(gene_name)
        label_pos_list.append(label_pos)
f_cds_track.xticks(label_pos_list, labels, label_size=6, label_orientation="vertical")

# Plot xticks (interval = 10 Kb)
r_cds_track.xticks_by_interval(
    10000, outer=False, label_formatter=lambda v: f"{v/1000:.1f} Kb"
)

circos.savefig("example02.png")

example02.png

3. Chord Diagram

from pycirclize import Circos
import pandas as pd

# Create matrix dataframe (3 x 6)
row_names = ["F1", "F2", "F3"]
col_names = ["T1", "T2", "T3", "T4", "T5", "T6"]
matrix_data = [
    [10, 16, 7, 7, 10, 8],
    [4, 9, 10, 12, 12, 7],
    [17, 13, 7, 4, 20, 4],
]
matrix_df = pd.DataFrame(matrix_data, index=row_names, columns=col_names)

# Initialize Circos from matrix for plotting Chord Diagram
circos = Circos.initialize_from_matrix(
    matrix_df,
    space=5,
    cmap="tab10",
    label_kws=dict(size=12),
    link_kws=dict(ec="black", lw=0.5, direction=1),
)

circos.savefig("example03.png")

example03.png

Not Implemented Features

List of features implemented in other Circos plotting tools but not yet implemented in pyCirclize. I may implement them when I feel like it.

  • Plot histogram
  • Plot boxplot
  • Plot violin
  • Label position auto adjustment