• Stars
    star
    9,264
  • Rank 3,878 (Top 0.08 %)
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created almost 6 years ago
  • Updated 10 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Best Practices, code samples, and documentation for Computer Vision.

+ Update July: Added support for action recognition and tracking
+              in the new release v1.2.

Computer Vision

In recent years, we've see an extra-ordinary growth in Computer Vision, with applications in face recognition, image understanding, search, drones, mapping, semi-autonomous and autonomous vehicles. A key part to many of these applications are visual recognition tasks such as image classification, object detection and image similarity.

This repository provides examples and best practice guidelines for building computer vision systems. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in Computer Vision algorithms, neural architectures, and operationalizing such systems. Rather than creating implementations from scratch, we draw from existing state-of-the-art libraries and build additional utility around loading image data, optimizing and evaluating models, and scaling up to the cloud. In addition, having worked in this space for many years, we aim to answer common questions, point out frequently observed pitfalls, and show how to use the cloud for training and deployment.

We hope that these examples and utilities can significantly reduce the β€œtime to market” by simplifying the experience from defining the business problem to development of solution by orders of magnitude. In addition, the example notebooks would serve as guidelines and showcase best practices and usage of the tools in a wide variety of languages.

These examples are provided as Jupyter notebooks and common utility functions. All examples use PyTorch as the underlying deep learning library.

Examples

This repository supports various Computer Vision scenarios which either operate on a single image:

Some supported CV scenarios

As well as scenarios such as action recognition which take a video sequence as input:

Target Audience

Our target audience for this repository includes data scientists and machine learning engineers with varying levels of Computer Vision knowledge as our content is source-only and targets custom machine learning modelling. The utilities and examples provided are intended to be solution accelerators for real-world vision problems.

Getting Started

To get started, navigate to the Setup Guide, which lists instructions on how to setup the compute environment and dependencies needed to run the notebooks in this repo. Once your environment is setup, navigate to the Scenarios folder and start exploring the notebooks. We recommend to start with the image classification notebooks, since this introduces concepts which are also used by the other scenarios (e.g. pre-training on ImageNet).

Alternatively, we support Binder Binder which makes it easy to try one of our notebooks in a web-browser simply by following this link. However, Binder is free, and as a result only comes with limited CPU compute power and without GPU support. Expect the notebook to run very slowly (this is somewhat improved by reducing image resolution to e.g. 60 pixels but at the cost of low accuracies).

Scenarios

The following is a summary of commonly used Computer Vision scenarios that are covered in this repository. For each of the main scenarios ("base"), we provide the tools to effectively build your own model. This includes simple tasks such as fine-tuning your own model on your own data, to more complex tasks such as hard-negative mining and even model deployment.

Scenario Support Description
Classification Base Image Classification is a supervised machine learning technique to learn and predict the category of a given image.
Similarity Base Image Similarity is a way to compute a similarity score given a pair of images. Given an image, it allows you to identify the most similar image in a given dataset.
Detection Base Object Detection is a technique that allows you to detect the bounding box of an object within an image.
Keypoints Base Keypoint detection can be used to detect specific points on an object. A pre-trained model is provided to detect body joints for human pose estimation.
Segmentation Base Image Segmentation assigns a category to each pixel in an image.
Action recognition Base Action recognition to identify in video/webcam footage what actions are performed (e.g. "running", "opening a bottle") and at what respective start/end times. We also implemented the i3d implementation of action recognition that can be found under (contrib)[contrib].
Tracking Base Tracking allows to detect and track multiple objects in a video sequence over time.
Crowd counting Contrib Counting the number of people in low-crowd-density (e.g. less than 10 people) and high-crowd-density (e.g. thousands of people) scenarios.

We separate the supported CV scenarios into two locations: (i) base: code and notebooks within the "utils_cv" and "scenarios" folders which follow strict coding guidelines, are well tested and maintained; (ii) contrib: code and other assets within the "contrib" folder, mainly covering less common CV scenarios using bleeding edge state-of-the-art approaches. Code in "contrib" is not regularly tested or maintained.

Computer Vision on Azure

Note that for certain computer vision problems, you may not need to build your own models. Instead, pre-built or easily customizable solutions exist on Azure which do not require any custom coding or machine learning expertise. We strongly recommend evaluating if these can sufficiently solve your problem. If these solutions are not applicable, or the accuracy of these solutions is not sufficient, then resorting to more complex and time-consuming custom approaches may be necessary.

The following Microsoft services offer simple solutions to address common computer vision tasks:

  • Vision Services are a set of pre-trained REST APIs which can be called for image tagging, face recognition, OCR, video analytics, and more. These APIs work out of the box and require minimal expertise in machine learning, but have limited customization capabilities. See the various demos available to get a feel for the functionality (e.g. Computer Vision). The service can be used through API calls or through SDKs (available in .NET, Python, Java, Node and Go languages)

  • Custom Vision is a SaaS service to train and deploy a model as a REST API given a user-provided training set. All steps including image upload, annotation, and model deployment can be performed using an intuitive UI or through SDKs (available in .NEt, Python, Java, Node and Go languages). Training image classification or object detection models can be achieved with minimal machine learning expertise. The Custom Vision offers more flexibility than using the pre-trained cognitive services APIs, but requires the user to bring and annotate their own data.

If you need to train your own model, the following services and links provide additional information that is likely useful.

  • Azure Machine Learning service (AzureML) is a service that helps users accelerate the training and deploying of machine learning models. While not specific for computer vision workloads, the AzureML Python SDK can be used for scalable and reliable training and deployment of machine learning solutions to the cloud. We leverage Azure Machine Learning in several of the notebooks within this repository (e.g. deployment to Azure Kubernetes Service)

  • Azure AI Reference architectures provide a set of examples (backed by code) of how to build common AI-oriented workloads that leverage multiple cloud components. While not computer vision specific, these reference architectures cover several machine learning workloads such as model deployment or batch scoring.

Build Status

AzureML Testing

Build Type Branch Status Branch Status
Linux GPU master Build Status staging Build Status
Linux CPU master Build Status staging Build Status
Notebook unit GPU master Build Status staging Build Status

Contributing

This project welcomes contributions and suggestions. Please see our contribution guidelines.

More Repositories

1

vscode

Visual Studio Code
TypeScript
163,565
star
2

PowerToys

Windows system utilities to maximize productivity
C#
110,602
star
3

TypeScript

TypeScript is a superset of JavaScript that compiles to clean JavaScript output.
TypeScript
100,730
star
4

terminal

The new Windows Terminal and the original Windows console host, all in the same place!
C++
94,835
star
5

Web-Dev-For-Beginners

24 Lessons, 12 Weeks, Get Started as a Web Developer
JavaScript
83,418
star
6

ML-For-Beginners

12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all
HTML
69,631
star
7

generative-ai-for-beginners

21 Lessons, Get Started Building with Generative AI πŸ”— https://microsoft.github.io/generative-ai-for-beginners/
Jupyter Notebook
64,519
star
8

playwright

Playwright is a framework for Web Testing and Automation. It allows testing Chromium, Firefox and WebKit with a single API.
TypeScript
64,013
star
9

monaco-editor

A browser based code editor
JavaScript
35,437
star
10

DeepSpeed

DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.
Python
35,130
star
11

AI-For-Beginners

12 Weeks, 24 Lessons, AI for All!
Jupyter Notebook
34,704
star
12

autogen

A programming framework for agentic AI πŸ€–
Jupyter Notebook
32,470
star
13

MS-DOS

The original sources of MS-DOS 1.25, 2.0, and 4.0 for reference purposes
Assembly
30,714
star
14

Data-Science-For-Beginners

10 Weeks, 20 Lessons, Data Science for All!
Jupyter Notebook
28,136
star
15

calculator

Windows Calculator: A simple yet powerful calculator that ships with Windows
C++
27,371
star
16

cascadia-code

This is a fun, new monospaced font that includes programming ligatures and is designed to enhance the modern look and feel of the Windows Terminal.
Python
25,726
star
17

JARVIS

JARVIS, a system to connect LLMs with ML community. Paper: https://arxiv.org/pdf/2303.17580.pdf
Python
23,519
star
18

api-guidelines

Microsoft REST API Guidelines
22,661
star
19

winget-cli

WinGet is the Windows Package Manager. This project includes a CLI (Command Line Interface), PowerShell modules, and a COM (Component Object Model) API (Application Programming Interface).
C++
20,495
star
20

unilm

Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities
Python
19,889
star
21

vcpkg

C++ Library Manager for Windows, Linux, and MacOS
CMake
19,600
star
22

fluentui

Fluent UI web represents a collection of utilities, React components, and web components for building web applications.
TypeScript
18,419
star
23

semantic-kernel

Integrate cutting-edge LLM technology quickly and easily into your apps
C#
17,792
star
24

graphrag

A modular graph-based Retrieval-Augmented Generation (RAG) system
Python
17,750
star
25

CNTK

Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit
C++
17,412
star
26

WSL

Issues found on WSL
PowerShell
17,372
star
27

LightGBM

A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
C++
16,470
star
28

AirSim

Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research
C++
16,327
star
29

react-native-windows

A framework for building native Windows apps with React.
C++
16,310
star
30

recommenders

Best Practices on Recommendation Systems
Python
16,075
star
31

IoT-For-Beginners

12 Weeks, 24 Lessons, IoT for All!
C++
15,360
star
32

qlib

Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.
Python
15,308
star
33

dotnet

This repo is the official home of .NET on GitHub. It's a great starting point to find many .NET OSS projects from Microsoft and the community, including many that are part of the .NET Foundation.
HTML
14,370
star
34

Bringing-Old-Photos-Back-to-Life

Bringing Old Photo Back to Life (CVPR 2020 oral)
Python
14,132
star
35

ai-edu

AI education materials for Chinese students, teachers and IT professionals.
HTML
13,485
star
36

pyright

Static Type Checker for Python
Python
13,195
star
37

nni

An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
Python
13,084
star
38

guidance

A guidance language for controlling large language models.
Jupyter Notebook
11,777
star
39

TypeScript-Node-Starter

A reference example for TypeScript and Node with a detailed README describing how to use the two together.
SCSS
11,314
star
40

Swin-Transformer

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows".
Python
11,187
star
41

TypeScript-React-Starter

A starter template for TypeScript and React with a detailed README describing how to use the two together.
TypeScript
11,081
star
42

frontend-bootcamp

Frontend Workshop from HTML/CSS/JS to TypeScript/React/Redux
TypeScript
10,807
star
43

mimalloc

mimalloc is a compact general purpose allocator with excellent performance.
C
10,532
star
44

windows-rs

Rust for Windows
Rust
10,411
star
45

wslg

Enabling the Windows Subsystem for Linux to include support for Wayland and X server related scenarios
C++
10,165
star
46

language-server-protocol

Defines a common protocol for language servers.
HTML
10,093
star
47

sql-server-samples

Azure Data SQL Samples - Official Microsoft GitHub Repository containing code samples for SQL Server, Azure SQL, Azure Synapse, and Azure SQL Edge
9,950
star
48

onnxruntime

ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator
C++
9,837
star
49

fast

The adaptive interface system for modern web experiences.
TypeScript
9,271
star
50

napajs

Napa.js: a multi-threaded JavaScript runtime
C++
9,256
star
51

Windows-universal-samples

API samples for the Universal Windows Platform.
JavaScript
9,253
star
52

LoRA

Code for loralib, an implementation of "LoRA: Low-Rank Adaptation of Large Language Models"
Python
9,145
star
53

fluentui-emoji

A collection of familiar, friendly, and modern emoji from Microsoft
Python
9,068
star
54

vscode-tips-and-tricks

Collection of helpful tips and tricks for VS Code.
9,038
star
55

playwright-python

Python version of the Playwright testing and automation library.
Python
8,990
star
56

STL

MSVC's implementation of the C++ Standard Library.
C++
8,978
star
57

react-native-code-push

React Native module for CodePush
C
8,643
star
58

vscode-extension-samples

Sample code illustrating the VS Code extension API.
TypeScript
8,628
star
59

inshellisense

IDE style command line auto complete
TypeScript
8,402
star
60

reverse-proxy

A toolkit for developing high-performance HTTP reverse proxy applications.
C#
8,398
star
61

reactxp

Library for cross-platform app development.
TypeScript
8,289
star
62

WSL2-Linux-Kernel

The source for the Linux kernel used in Windows Subsystem for Linux 2 (WSL2)
C
8,037
star
63

ailab

Experience, Learn and Code the latest breakthrough innovations with Microsoft AI
C#
7,699
star
64

c9-python-getting-started

Sample code for Channel 9 Python for Beginners course
Jupyter Notebook
7,642
star
65

UFO

A UI-Focused Agent for Windows OS Interaction.
Python
7,633
star
66

cpprestsdk

The C++ REST SDK is a Microsoft project for cloud-based client-server communication in native code using a modern asynchronous C++ API design. This project aims to help C++ developers connect to and interact with services.
C++
7,573
star
67

botframework-sdk

Bot Framework provides the most comprehensive experience for building conversation applications.
JavaScript
7,484
star
68

azuredatastudio

Azure Data Studio is a data management and development tool with connectivity to popular cloud and on-premises databases. Azure Data Studio supports Windows, macOS, and Linux, with immediate capability to connect to Azure SQL and SQL Server. Browse the extension library for more database support options including MySQL, PostreSQL, and MongoDB.
TypeScript
7,182
star
69

winget-pkgs

The Microsoft community Windows Package Manager manifest repository
6,981
star
70

Windows-driver-samples

This repo contains driver samples prepared for use with Microsoft Visual Studio and the Windows Driver Kit (WDK). It contains both Universal Windows Driver and desktop-only driver samples.
C
6,924
star
71

winfile

Original Windows File Manager (winfile) with enhancements
C
6,437
star
72

nlp-recipes

Natural Language Processing Best Practices & Examples
Python
6,379
star
73

WinObjC

Objective-C for Windows
C
6,241
star
74

SandDance

Visually explore, understand, and present your data.
TypeScript
6,091
star
75

VFSForGit

Virtual File System for Git: Enable Git at Enterprise Scale
C#
5,979
star
76

GSL

Guidelines Support Library
C++
5,957
star
77

MixedRealityToolkit-Unity

This repository is for the legacy Mixed Reality Toolkit (MRTK) v2. For the latest version of the MRTK please visit https://github.com/MixedRealityToolkit/MixedRealityToolkit-Unity
C#
5,943
star
78

fluentui-system-icons

Fluent System Icons are a collection of familiar, friendly and modern icons from Microsoft.
HTML
5,934
star
79

vscode-go

An extension for VS Code which provides support for the Go language. We have moved to https://github.com/golang/vscode-go
TypeScript
5,932
star
80

microsoft-ui-xaml

Windows UI Library: the latest Windows 10 native controls and Fluent styles for your applications
5,861
star
81

vscode-recipes

JavaScript
5,859
star
82

rushstack

Monorepo for tools developed by the Rush Stack community
TypeScript
5,840
star
83

MMdnn

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
Python
5,782
star
84

vscode-docs

Public documentation for Visual Studio Code
Markdown
5,650
star
85

ethr

Ethr is a Comprehensive Network Measurement Tool for TCP, UDP & ICMP.
Go
5,642
star
86

FASTER

Fast persistent recoverable log and key-value store + cache, in C# and C++.
C#
5,630
star
87

vscode-cpptools

Official repository for the Microsoft C/C++ extension for VS Code.
TypeScript
5,501
star
88

DirectX-Graphics-Samples

This repo contains the DirectX Graphics samples that demonstrate how to build graphics intensive applications on Windows.
C++
5,440
star
89

promptbase

All things prompt engineering
Python
5,367
star
90

BosqueLanguage

The Bosque programming language is an experiment in regularized design for a machine assisted rapid and reliable software development lifecycle.
TypeScript
5,282
star
91

TaskWeaver

A code-first agent framework for seamlessly planning and executing data analytics tasks.
Python
5,258
star
92

Detours

Detours is a software package for monitoring and instrumenting API calls on Windows. It is distributed in source code form.
C++
5,139
star
93

tsyringe

Lightweight dependency injection container for JavaScript/TypeScript
TypeScript
5,104
star
94

DeepSpeedExamples

Example models using DeepSpeed
Python
5,092
star
95

SynapseML

Simple and Distributed Machine Learning
Scala
5,041
star
96

Windows-classic-samples

This repo contains samples that demonstrate the API used in Windows classic desktop applications.
5,040
star
97

sudo

It's sudo, for Windows
Rust
4,998
star
98

TypeScript-Handbook

Deprecated, please use the TypeScript-Website repo instead
JavaScript
4,883
star
99

vscode-dev-containers

NOTE: Most of the contents of this repository have been migrated to the new devcontainers GitHub org (https://github.com/devcontainers). See https://github.com/devcontainers/template-starter and https://github.com/devcontainers/feature-starter for information on creating your own!
Shell
4,713
star
100

tsdoc

A doc comment standard for TypeScript
TypeScript
4,705
star