• Stars
    star
    69,631
  • Rank 110 (Top 0.01 %)
  • Language
    HTML
  • License
    MIT License
  • Created over 3 years ago
  • Updated 27 days ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all

GitHub license GitHub contributors GitHub issues GitHub pull-requests PRs Welcome

GitHub watchers GitHub forks GitHub stars

Machine Learning for Beginners - A Curriculum

🌍 Travel around the world as we explore Machine Learning by means of world cultures 🌍

Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 26-lesson curriculum all about Machine Learning. In this curriculum, you will learn about what is sometimes called classic machine learning, using primarily Scikit-learn as a library and avoiding deep learning, which is covered in our forthcoming 'AI for Beginners' curriculum. Pair these lessons with our 'Data Science for Beginners' curriculum, as well!

Travel with us around the world as we apply these classic techniques to data from many areas of the world. Each lesson includes pre- and post-lesson quizzes, written instructions to complete the lesson, a solution, an assignment, and more. Our project-based pedagogy allows you to learn while building, a proven way for new skills to 'stick'.

✍️ Hearty thanks to our authors Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu and Amy Boyd

🎨 Thanks as well to our illustrators Tomomi Imura, Dasani Madipalli, and Jen Looper

🙏 Special thanks 🙏 to our Microsoft Student Ambassador authors, reviewers, and content contributors, notably Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila, and Snigdha Agarwal

🤩 Extra gratitude to Microsoft Student Ambassadors Eric Wanjau, Jasleen Sondhi, and Vidushi Gupta for our R lessons!


Getting Started

Students, to use this curriculum, fork the entire repo to your own GitHub account and complete the exercises on your own or with a group:

  • Start with a pre-lecture quiz.
  • Read the lecture and complete the activities, pausing and reflecting at each knowledge check.
  • Try to create the projects by comprehending the lessons rather than running the solution code; however that code is available in the /solution folders in each project-oriented lesson.
  • Take the post-lecture quiz.
  • Complete the challenge.
  • Complete the assignment.
  • After completing a lesson group, visit the Discussion Board and "learn out loud" by filling out the appropriate PAT rubric. A 'PAT' is a Progress Assessment Tool that is a rubric you fill out to further your learning. You can also react to other PATs so we can learn together.

For further study, we recommend following these Microsoft Learn modules and learning paths.

Teachers, we have included some suggestions on how to use this curriculum.


Video walkthroughs

Some of the lessons are available as short form video. You can find all these in-line in the lessons, or on the ML for Beginners playlist on the Microsoft Developer YouTube channel by clicking the image below.

ML for beginners banner


Meet the Team

Promo video

Gif by Mohit Jaisal

🎥 Click the image above for a video about the project and the folks who created it!


Pedagogy

We have chosen two pedagogical tenets while building this curriculum: ensuring that it is hands-on project-based and that it includes frequent quizzes. In addition, this curriculum has a common theme to give it cohesion.

By ensuring that the content aligns with projects, the process is made more engaging for students and retention of concepts will be augmented. In addition, a low-stakes quiz before a class sets the intention of the student towards learning a topic, while a second quiz after class ensures further retention. This curriculum was designed to be flexible and fun and can be taken in whole or in part. The projects start small and become increasingly complex by the end of the 12-week cycle. This curriculum also includes a postscript on real-world applications of ML, which can be used as extra credit or as a basis for discussion.

Find our Code of Conduct, Contributing, and Translation guidelines. We welcome your constructive feedback!

Each lesson includes:

  • optional sketchnote
  • optional supplemental video
  • video walkthrough (some lessons only)
  • pre-lecture warmup quiz
  • written lesson
  • for project-based lessons, step-by-step guides on how to build the project
  • knowledge checks
  • a challenge
  • supplemental reading
  • assignment
  • post-lecture quiz

A note about languages: These lessons are primarily written in Python, but many are also available in R. To complete an R lesson, go to the /solution folder and look for R lessons. They include an .rmd extension that represents an R Markdown file which can be simply defined as an embedding of code chunks (of R or other languages) and a YAML header (that guides how to format outputs such as PDF) in a Markdown document. As such, it serves as an exemplary authoring framework for data science since it allows you to combine your code, its output, and your thoughts by allowing you to write them down in Markdown. Moreover, R Markdown documents can be rendered to output formats such as PDF, HTML, or Word.

A note about quizzes: All quizzes are contained in this app, for 52 total quizzes of three questions each. They are linked from within the lessons but the quiz app can be run locally; follow the instruction in the quiz-app folder.

Lesson Number Topic Lesson Grouping Learning Objectives Linked Lesson Author
01 Introduction to machine learning Introduction Learn the basic concepts behind machine learning Lesson Muhammad
02 The History of machine learning Introduction Learn the history underlying this field Lesson Jen and Amy
03 Fairness and machine learning Introduction What are the important philosophical issues around fairness that students should consider when building and applying ML models? Lesson Tomomi
04 Techniques for machine learning Introduction What techniques do ML researchers use to build ML models? Lesson Chris and Jen
05 Introduction to regression Regression Get started with Python and Scikit-learn for regression models
  • Jen
  • Eric Wanjau
06 North American pumpkin prices 🎃 Regression Visualize and clean data in preparation for ML
  • Jen
  • Eric Wanjau
07 North American pumpkin prices 🎃 Regression Build linear and polynomial regression models
  • Jen and Dmitry
  • Eric Wanjau
08 North American pumpkin prices 🎃 Regression Build a logistic regression model
  • Jen
  • Eric Wanjau
09 A Web App 🔌 Web App Build a web app to use your trained model Python Jen
10 Introduction to classification Classification Clean, prep, and visualize your data; introduction to classification
  • Jen and Cassie
  • Eric Wanjau
11 Delicious Asian and Indian cuisines 🍜 Classification Introduction to classifiers
  • Jen and Cassie
  • Eric Wanjau
12 Delicious Asian and Indian cuisines 🍜 Classification More classifiers
  • Jen and Cassie
  • Eric Wanjau
13 Delicious Asian and Indian cuisines 🍜 Classification Build a recommender web app using your model Python Jen
14 Introduction to clustering Clustering Clean, prep, and visualize your data; Introduction to clustering
  • Jen
  • Eric Wanjau
15 Exploring Nigerian Musical Tastes 🎧 Clustering Explore the K-Means clustering method
  • Jen
  • Eric Wanjau
16 Introduction to natural language processing ☕️ Natural language processing Learn the basics about NLP by building a simple bot Python Stephen
17 Common NLP Tasks ☕️ Natural language processing Deepen your NLP knowledge by understanding common tasks required when dealing with language structures Python Stephen
18 Translation and sentiment analysis ♥️ Natural language processing Translation and sentiment analysis with Jane Austen Python Stephen
19 Romantic hotels of Europe ♥️ Natural language processing Sentiment analysis with hotel reviews 1 Python Stephen
20 Romantic hotels of Europe ♥️ Natural language processing Sentiment analysis with hotel reviews 2 Python Stephen
21 Introduction to time series forecasting Time series Introduction to time series forecasting Python Francesca
22 ⚡️ World Power Usage ⚡️ - time series forecasting with ARIMA Time series Time series forecasting with ARIMA Python Francesca
23 ⚡️ World Power Usage ⚡️ - time series forecasting with SVR Time series Time series forecasting with Support Vector Regressor Python Anirban
24 Introduction to reinforcement learning Reinforcement learning Introduction to reinforcement learning with Q-Learning Python Dmitry
25 Help Peter avoid the wolf! 🐺 Reinforcement learning Reinforcement learning Gym Python Dmitry
Postscript Real-World ML scenarios and applications ML in the Wild Interesting and revealing real-world applications of classical ML Lesson Team
Postscript Model Debugging in ML using RAI dashboard ML in the Wild Model Debugging in Machine Learning using Responsible AI dashboard components Lesson Ruth Yakubu

Offline access

You can run this documentation offline by using Docsify. Fork this repo, install Docsify on your local machine, and then in the root folder of this repo, type docsify serve. The website will be served on port 3000 on your localhost: localhost:3000.

PDFs

Find a pdf of the curriculum with links here.

Help Wanted!

Would you like to contribute a translation? Please read our translation guidelines and add a templated issue to manage the workload here.

Other Curricula

Our team produces other curricula! Check out:

More Repositories

1

vscode

Visual Studio Code
TypeScript
163,565
star
2

PowerToys

Windows system utilities to maximize productivity
C#
110,602
star
3

TypeScript

TypeScript is a superset of JavaScript that compiles to clean JavaScript output.
TypeScript
100,730
star
4

terminal

The new Windows Terminal and the original Windows console host, all in the same place!
C++
94,835
star
5

Web-Dev-For-Beginners

24 Lessons, 12 Weeks, Get Started as a Web Developer
JavaScript
83,418
star
6

generative-ai-for-beginners

21 Lessons, Get Started Building with Generative AI 🔗 https://microsoft.github.io/generative-ai-for-beginners/
Jupyter Notebook
64,519
star
7

playwright

Playwright is a framework for Web Testing and Automation. It allows testing Chromium, Firefox and WebKit with a single API.
TypeScript
64,013
star
8

monaco-editor

A browser based code editor
JavaScript
35,437
star
9

DeepSpeed

DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.
Python
35,130
star
10

AI-For-Beginners

12 Weeks, 24 Lessons, AI for All!
Jupyter Notebook
34,704
star
11

autogen

A programming framework for agentic AI 🤖
Jupyter Notebook
32,470
star
12

MS-DOS

The original sources of MS-DOS 1.25, 2.0, and 4.0 for reference purposes
Assembly
30,714
star
13

Data-Science-For-Beginners

10 Weeks, 20 Lessons, Data Science for All!
Jupyter Notebook
28,136
star
14

calculator

Windows Calculator: A simple yet powerful calculator that ships with Windows
C++
27,371
star
15

cascadia-code

This is a fun, new monospaced font that includes programming ligatures and is designed to enhance the modern look and feel of the Windows Terminal.
Python
25,726
star
16

JARVIS

JARVIS, a system to connect LLMs with ML community. Paper: https://arxiv.org/pdf/2303.17580.pdf
Python
23,519
star
17

api-guidelines

Microsoft REST API Guidelines
22,661
star
18

winget-cli

WinGet is the Windows Package Manager. This project includes a CLI (Command Line Interface), PowerShell modules, and a COM (Component Object Model) API (Application Programming Interface).
C++
20,495
star
19

unilm

Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities
Python
19,889
star
20

vcpkg

C++ Library Manager for Windows, Linux, and MacOS
CMake
19,600
star
21

fluentui

Fluent UI web represents a collection of utilities, React components, and web components for building web applications.
TypeScript
18,419
star
22

semantic-kernel

Integrate cutting-edge LLM technology quickly and easily into your apps
C#
17,792
star
23

graphrag

A modular graph-based Retrieval-Augmented Generation (RAG) system
Python
17,750
star
24

CNTK

Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit
C++
17,412
star
25

WSL

Issues found on WSL
PowerShell
17,372
star
26

LightGBM

A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
C++
16,470
star
27

AirSim

Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research
C++
16,327
star
28

react-native-windows

A framework for building native Windows apps with React.
C++
16,310
star
29

recommenders

Best Practices on Recommendation Systems
Python
16,075
star
30

IoT-For-Beginners

12 Weeks, 24 Lessons, IoT for All!
C++
15,360
star
31

qlib

Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.
Python
15,308
star
32

dotnet

This repo is the official home of .NET on GitHub. It's a great starting point to find many .NET OSS projects from Microsoft and the community, including many that are part of the .NET Foundation.
HTML
14,370
star
33

Bringing-Old-Photos-Back-to-Life

Bringing Old Photo Back to Life (CVPR 2020 oral)
Python
14,132
star
34

ai-edu

AI education materials for Chinese students, teachers and IT professionals.
HTML
13,485
star
35

pyright

Static Type Checker for Python
Python
13,195
star
36

nni

An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
Python
13,084
star
37

guidance

A guidance language for controlling large language models.
Jupyter Notebook
11,777
star
38

TypeScript-Node-Starter

A reference example for TypeScript and Node with a detailed README describing how to use the two together.
SCSS
11,314
star
39

Swin-Transformer

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows".
Python
11,187
star
40

TypeScript-React-Starter

A starter template for TypeScript and React with a detailed README describing how to use the two together.
TypeScript
11,081
star
41

frontend-bootcamp

Frontend Workshop from HTML/CSS/JS to TypeScript/React/Redux
TypeScript
10,807
star
42

mimalloc

mimalloc is a compact general purpose allocator with excellent performance.
C
10,532
star
43

windows-rs

Rust for Windows
Rust
10,411
star
44

wslg

Enabling the Windows Subsystem for Linux to include support for Wayland and X server related scenarios
C++
10,165
star
45

language-server-protocol

Defines a common protocol for language servers.
HTML
10,093
star
46

sql-server-samples

Azure Data SQL Samples - Official Microsoft GitHub Repository containing code samples for SQL Server, Azure SQL, Azure Synapse, and Azure SQL Edge
9,950
star
47

onnxruntime

ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator
C++
9,837
star
48

fast

The adaptive interface system for modern web experiences.
TypeScript
9,271
star
49

computervision-recipes

Best Practices, code samples, and documentation for Computer Vision.
Jupyter Notebook
9,264
star
50

napajs

Napa.js: a multi-threaded JavaScript runtime
C++
9,256
star
51

Windows-universal-samples

API samples for the Universal Windows Platform.
JavaScript
9,253
star
52

LoRA

Code for loralib, an implementation of "LoRA: Low-Rank Adaptation of Large Language Models"
Python
9,145
star
53

fluentui-emoji

A collection of familiar, friendly, and modern emoji from Microsoft
Python
9,068
star
54

vscode-tips-and-tricks

Collection of helpful tips and tricks for VS Code.
9,038
star
55

playwright-python

Python version of the Playwright testing and automation library.
Python
8,990
star
56

STL

MSVC's implementation of the C++ Standard Library.
C++
8,978
star
57

react-native-code-push

React Native module for CodePush
C
8,643
star
58

vscode-extension-samples

Sample code illustrating the VS Code extension API.
TypeScript
8,628
star
59

inshellisense

IDE style command line auto complete
TypeScript
8,402
star
60

reverse-proxy

A toolkit for developing high-performance HTTP reverse proxy applications.
C#
8,398
star
61

reactxp

Library for cross-platform app development.
TypeScript
8,289
star
62

WSL2-Linux-Kernel

The source for the Linux kernel used in Windows Subsystem for Linux 2 (WSL2)
C
8,037
star
63

ailab

Experience, Learn and Code the latest breakthrough innovations with Microsoft AI
C#
7,699
star
64

c9-python-getting-started

Sample code for Channel 9 Python for Beginners course
Jupyter Notebook
7,642
star
65

UFO

A UI-Focused Agent for Windows OS Interaction.
Python
7,633
star
66

cpprestsdk

The C++ REST SDK is a Microsoft project for cloud-based client-server communication in native code using a modern asynchronous C++ API design. This project aims to help C++ developers connect to and interact with services.
C++
7,573
star
67

botframework-sdk

Bot Framework provides the most comprehensive experience for building conversation applications.
JavaScript
7,484
star
68

azuredatastudio

Azure Data Studio is a data management and development tool with connectivity to popular cloud and on-premises databases. Azure Data Studio supports Windows, macOS, and Linux, with immediate capability to connect to Azure SQL and SQL Server. Browse the extension library for more database support options including MySQL, PostreSQL, and MongoDB.
TypeScript
7,182
star
69

winget-pkgs

The Microsoft community Windows Package Manager manifest repository
6,981
star
70

Windows-driver-samples

This repo contains driver samples prepared for use with Microsoft Visual Studio and the Windows Driver Kit (WDK). It contains both Universal Windows Driver and desktop-only driver samples.
C
6,924
star
71

winfile

Original Windows File Manager (winfile) with enhancements
C
6,437
star
72

nlp-recipes

Natural Language Processing Best Practices & Examples
Python
6,379
star
73

WinObjC

Objective-C for Windows
C
6,241
star
74

SandDance

Visually explore, understand, and present your data.
TypeScript
6,091
star
75

VFSForGit

Virtual File System for Git: Enable Git at Enterprise Scale
C#
5,979
star
76

GSL

Guidelines Support Library
C++
5,957
star
77

MixedRealityToolkit-Unity

This repository is for the legacy Mixed Reality Toolkit (MRTK) v2. For the latest version of the MRTK please visit https://github.com/MixedRealityToolkit/MixedRealityToolkit-Unity
C#
5,943
star
78

fluentui-system-icons

Fluent System Icons are a collection of familiar, friendly and modern icons from Microsoft.
HTML
5,934
star
79

vscode-go

An extension for VS Code which provides support for the Go language. We have moved to https://github.com/golang/vscode-go
TypeScript
5,932
star
80

microsoft-ui-xaml

Windows UI Library: the latest Windows 10 native controls and Fluent styles for your applications
5,861
star
81

vscode-recipes

JavaScript
5,859
star
82

rushstack

Monorepo for tools developed by the Rush Stack community
TypeScript
5,840
star
83

MMdnn

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
Python
5,782
star
84

vscode-docs

Public documentation for Visual Studio Code
Markdown
5,650
star
85

ethr

Ethr is a Comprehensive Network Measurement Tool for TCP, UDP & ICMP.
Go
5,642
star
86

FASTER

Fast persistent recoverable log and key-value store + cache, in C# and C++.
C#
5,630
star
87

vscode-cpptools

Official repository for the Microsoft C/C++ extension for VS Code.
TypeScript
5,501
star
88

DirectX-Graphics-Samples

This repo contains the DirectX Graphics samples that demonstrate how to build graphics intensive applications on Windows.
C++
5,440
star
89

promptbase

All things prompt engineering
Python
5,367
star
90

BosqueLanguage

The Bosque programming language is an experiment in regularized design for a machine assisted rapid and reliable software development lifecycle.
TypeScript
5,282
star
91

TaskWeaver

A code-first agent framework for seamlessly planning and executing data analytics tasks.
Python
5,258
star
92

Detours

Detours is a software package for monitoring and instrumenting API calls on Windows. It is distributed in source code form.
C++
5,139
star
93

tsyringe

Lightweight dependency injection container for JavaScript/TypeScript
TypeScript
5,104
star
94

DeepSpeedExamples

Example models using DeepSpeed
Python
5,092
star
95

SynapseML

Simple and Distributed Machine Learning
Scala
5,041
star
96

Windows-classic-samples

This repo contains samples that demonstrate the API used in Windows classic desktop applications.
5,040
star
97

sudo

It's sudo, for Windows
Rust
4,998
star
98

TypeScript-Handbook

Deprecated, please use the TypeScript-Website repo instead
JavaScript
4,883
star
99

vscode-dev-containers

NOTE: Most of the contents of this repository have been migrated to the new devcontainers GitHub org (https://github.com/devcontainers). See https://github.com/devcontainers/template-starter and https://github.com/devcontainers/feature-starter for information on creating your own!
Shell
4,713
star
100

tsdoc

A doc comment standard for TypeScript
TypeScript
4,705
star