• This repository has been archived on 16/Nov/2023
  • Stars
    star
    6,379
  • Rank 6,238 (Top 0.2 %)
  • Language
    Python
  • License
    MIT License
  • Created over 5 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Natural Language Processing Best Practices & Examples

NLP Best Practices

In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive business adoption of artificial intelligence (AI) solutions. In the last few years, researchers have been applying newer deep learning methods to NLP. Data scientists started moving from traditional methods to state-of-the-art (SOTA) deep neural network (DNN) algorithms which use language models pretrained on large text corpora.

This repository contains examples and best practices for building NLP systems, provided as Jupyter notebooks and utility functions. The focus of the repository is on state-of-the-art methods and common scenarios that are popular among researchers and practitioners working on problems involving text and language.

Overview

The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in NLP algorithms, neural architectures, and distributed machine learning systems. The content is based on our past and potential future engagements with customers as well as collaboration with partners, researchers, and the open source community.

We hope that the tools can significantly reduce the โ€œtime to marketโ€ by simplifying the experience from defining the business problem to development of solution by orders of magnitude. In addition, the example notebooks would serve as guidelines and showcase best practices and usage of the tools in a wide variety of languages.

In an era of transfer learning, transformers, and deep architectures, we believe that pretrained models provide a unified solution to many real-world problems and allow handling different tasks and languages easily. We will, therefore, prioritize such models, as they achieve state-of-the-art results on several NLP benchmarks like GLUE and SQuAD leaderboards. The models can be used in a number of applications ranging from simple text classification to sophisticated intelligent chat bots.

Note that for certain kind of NLP problems, you may not need to build your own models. Instead, pre-built or easily customizable solutions exist which do not require any custom coding or machine learning expertise. We strongly recommend evaluating if these can sufficiently solve your problem. If these solutions are not applicable, or the accuracy of these solutions is not sufficient, then resorting to more complex and time-consuming custom approaches may be necessary. The following cognitive services offer simple solutions to address common NLP tasks:

Text Analytics are a set of pre-trained REST APIs which can be called for Sentiment Analysis, Key phrase extraction, Language detection and Named Entity Detection and more. These APIs work out of the box and require minimal expertise in machine learning, but have limited customization capabilities.

QnA Maker is a cloud-based API service that lets you create a conversational question-and-answer layer over your existing data. Use it to build a knowledge base by extracting questions and answers from your semi-structured content, including FAQs, manuals, and documents.

Language Understanding is a SaaS service to train and deploy a model as a REST API given a user-provided training set. You could do Intent Classification as well as Named Entity Extraction by performing simple steps of providing example utterances and labelling them. It supports Active Learning, so your model always keeps learning and improving.

Target Audience

For this repository our target audience includes data scientists and machine learning engineers with varying levels of NLP knowledge as our content is source-only and targets custom machine learning modelling. The utilities and examples provided are intended to be solution accelerators for real-world NLP problems.

Focus Areas

The repository aims to expand NLP capabilities along three separate dimensions

Scenarios

We aim to have end-to-end examples of common tasks and scenarios such as text classification, named entity recognition etc.

Algorithms

We aim to support multiple models for each of the supported scenarios. Currently, transformer-based models are supported across most scenarios. We have been working on integrating the transformers package from Hugging Face which allows users to easily load pretrained models and fine-tune them for different tasks.

Languages

We strongly subscribe to the multi-language principles laid down by "Emily Bender"

  • "Natural language is not a synonym for English"
  • "English isn't generic for language, despite what NLP papers might lead you to believe"
  • "Always name the language you are working on" (Bender rule)

The repository aims to support non-English languages across all the scenarios. Pre-trained models used in the repository such as BERT, FastText support 100+ languages out of the box. Our goal is to provide end-to-end examples in as many languages as possible. We encourage community contributions in this area.

Content

The following is a summary of the commonly used NLP scenarios covered in the repository. Each scenario is demonstrated in one or more Jupyter notebook examples that make use of the core code base of models and repository utilities.

Scenario Models Description Languages
Text Classification BERT, DistillBERT, XLNet, RoBERTa, ALBERT, XLM Text classification is a supervised learning method of learning and predicting the category or the class of a document given its text content. English, Chinese, Hindi, Arabic, German, French, Japanese, Spanish, Dutch
Named Entity Recognition BERT Named entity recognition (NER) is the task of classifying words or key phrases of a text into predefined entities of interest. English
Text Summarization BERTSumExt
BERTSumAbs
UniLM (s2s-ft)
MiniLM
Text summarization is a language generation task of summarizing the input text into a shorter paragraph of text. English
Entailment BERT, XLNet, RoBERTa Textual entailment is the task of classifying the binary relation between two natural-language texts, text and hypothesis, to determine if the text agrees with the hypothesis or not. English
Question Answering BiDAF, BERT, XLNet Question answering (QA) is the task of retrieving or generating a valid answer for a given query in natural language, provided with a passage related to the query. English
Sentence Similarity BERT, GenSen Sentence similarity is the process of computing a similarity score given a pair of text documents. English
Embeddings Word2Vec
fastText
GloVe
Embedding is the process of converting a word or a piece of text to a continuous vector space of real number, usually, in low dimension. English
Sentiment Analysis Dependency Parser
GloVe
Provides an example of train and use Aspect Based Sentiment Analysis with Azure ML and Intel NLP Architect . English

Getting Started

While solving NLP problems, it is always good to start with the prebuilt Cognitive Services. When the needs are beyond the bounds of the prebuilt cognitive service and when you want to search for custom machine learning methods, you will find this repository very useful. To get started, navigate to the Setup Guide, which lists instructions on how to setup your environment and dependencies.

Azure Machine Learning Service

Azure Machine Learning service is a cloud service used to train, deploy, automate, and manage machine learning models, all at the broad scale that the cloud provides. AzureML is presented in notebooks across different scenarios to enhance the efficiency of developing Natural Language systems at scale and for various AI model development related tasks like:

To successfully run these notebooks, you will need an Azure subscription or can try Azure for free. There may be other Azure services or products used in the notebooks. Introduction and/or reference of those will be provided in the notebooks themselves.

Contributing

We hope that the open source community would contribute to the content and bring in the latest SOTA algorithm. This project welcomes contributions and suggestions. Before contributing, please see our contribution guidelines.

Blog Posts

References

The following is a list of related repositories that we like and think are useful for NLP tasks.

Repository Description
Transformers A great PyTorch library from Hugging Face with implementations of popular transformer-based models. We've been using their package extensively in this repo and greatly appreciate their effort.
Azure Machine Learning Notebooks ML and deep learning examples with Azure Machine Learning.
AzureML-BERT End-to-end recipes for pre-training and fine-tuning BERT using Azure Machine Learning service.
MASS MASS: Masked Sequence to Sequence Pre-training for Language Generation.
MT-DNN Multi-Task Deep Neural Networks for Natural Language Understanding.
UniLM Unified Language Model Pre-training.
DialoGPT DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation

Build Status

Build Branch Status
Linux CPU master Build Status
Linux CPU staging Build Status
Linux GPU master Build Status
Linux GPU staging Build Status

More Repositories

1

vscode

Visual Studio Code
TypeScript
163,565
star
2

PowerToys

Windows system utilities to maximize productivity
C#
110,602
star
3

TypeScript

TypeScript is a superset of JavaScript that compiles to clean JavaScript output.
TypeScript
100,730
star
4

terminal

The new Windows Terminal and the original Windows console host, all in the same place!
C++
94,835
star
5

Web-Dev-For-Beginners

24 Lessons, 12 Weeks, Get Started as a Web Developer
JavaScript
83,418
star
6

ML-For-Beginners

12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all
HTML
69,631
star
7

generative-ai-for-beginners

21 Lessons, Get Started Building with Generative AI ๐Ÿ”— https://microsoft.github.io/generative-ai-for-beginners/
Jupyter Notebook
64,519
star
8

playwright

Playwright is a framework for Web Testing and Automation. It allows testing Chromium, Firefox and WebKit with a single API.
TypeScript
64,013
star
9

monaco-editor

A browser based code editor
JavaScript
35,437
star
10

DeepSpeed

DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.
Python
35,130
star
11

AI-For-Beginners

12 Weeks, 24 Lessons, AI for All!
Jupyter Notebook
34,704
star
12

autogen

A programming framework for agentic AI ๐Ÿค–
Jupyter Notebook
32,470
star
13

MS-DOS

The original sources of MS-DOS 1.25, 2.0, and 4.0 for reference purposes
Assembly
30,714
star
14

Data-Science-For-Beginners

10 Weeks, 20 Lessons, Data Science for All!
Jupyter Notebook
28,136
star
15

calculator

Windows Calculator: A simple yet powerful calculator that ships with Windows
C++
27,371
star
16

cascadia-code

This is a fun, new monospaced font that includes programming ligatures and is designed to enhance the modern look and feel of the Windows Terminal.
Python
25,726
star
17

JARVIS

JARVIS, a system to connect LLMs with ML community. Paper: https://arxiv.org/pdf/2303.17580.pdf
Python
23,519
star
18

api-guidelines

Microsoft REST API Guidelines
22,661
star
19

winget-cli

WinGet is the Windows Package Manager. This project includes a CLI (Command Line Interface), PowerShell modules, and a COM (Component Object Model) API (Application Programming Interface).
C++
20,495
star
20

unilm

Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities
Python
19,889
star
21

vcpkg

C++ Library Manager for Windows, Linux, and MacOS
CMake
19,600
star
22

fluentui

Fluent UI web represents a collection of utilities, React components, and web components for building web applications.
TypeScript
18,419
star
23

semantic-kernel

Integrate cutting-edge LLM technology quickly and easily into your apps
C#
17,792
star
24

graphrag

A modular graph-based Retrieval-Augmented Generation (RAG) system
Python
17,750
star
25

CNTK

Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit
C++
17,412
star
26

WSL

Issues found on WSL
PowerShell
17,372
star
27

LightGBM

A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
C++
16,470
star
28

AirSim

Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research
C++
16,327
star
29

react-native-windows

A framework for building native Windows apps with React.
C++
16,310
star
30

recommenders

Best Practices on Recommendation Systems
Python
16,075
star
31

IoT-For-Beginners

12 Weeks, 24 Lessons, IoT for All!
C++
15,360
star
32

qlib

Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.
Python
15,308
star
33

dotnet

This repo is the official home of .NET on GitHub. It's a great starting point to find many .NET OSS projects from Microsoft and the community, including many that are part of the .NET Foundation.
HTML
14,370
star
34

Bringing-Old-Photos-Back-to-Life

Bringing Old Photo Back to Life (CVPR 2020 oral)
Python
14,132
star
35

ai-edu

AI education materials for Chinese students, teachers and IT professionals.
HTML
13,485
star
36

pyright

Static Type Checker for Python
Python
13,195
star
37

nni

An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
Python
13,084
star
38

guidance

A guidance language for controlling large language models.
Jupyter Notebook
11,777
star
39

TypeScript-Node-Starter

A reference example for TypeScript and Node with a detailed README describing how to use the two together.
SCSS
11,314
star
40

Swin-Transformer

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows".
Python
11,187
star
41

TypeScript-React-Starter

A starter template for TypeScript and React with a detailed README describing how to use the two together.
TypeScript
11,081
star
42

frontend-bootcamp

Frontend Workshop from HTML/CSS/JS to TypeScript/React/Redux
TypeScript
10,807
star
43

mimalloc

mimalloc is a compact general purpose allocator with excellent performance.
C
10,532
star
44

windows-rs

Rust for Windows
Rust
10,411
star
45

wslg

Enabling the Windows Subsystem for Linux to include support for Wayland and X server related scenarios
C++
10,165
star
46

language-server-protocol

Defines a common protocol for language servers.
HTML
10,093
star
47

sql-server-samples

Azure Data SQL Samples - Official Microsoft GitHub Repository containing code samples for SQL Server, Azure SQL, Azure Synapse, and Azure SQL Edge
9,950
star
48

onnxruntime

ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator
C++
9,837
star
49

fast

The adaptive interface system for modern web experiences.
TypeScript
9,271
star
50

computervision-recipes

Best Practices, code samples, and documentation for Computer Vision.
Jupyter Notebook
9,264
star
51

napajs

Napa.js: a multi-threaded JavaScript runtime
C++
9,256
star
52

Windows-universal-samples

API samples for the Universal Windows Platform.
JavaScript
9,253
star
53

LoRA

Code for loralib, an implementation of "LoRA: Low-Rank Adaptation of Large Language Models"
Python
9,145
star
54

fluentui-emoji

A collection of familiar, friendly, and modern emoji from Microsoft
Python
9,068
star
55

vscode-tips-and-tricks

Collection of helpful tips and tricks for VS Code.
9,038
star
56

playwright-python

Python version of the Playwright testing and automation library.
Python
8,990
star
57

STL

MSVC's implementation of the C++ Standard Library.
C++
8,978
star
58

react-native-code-push

React Native module for CodePush
C
8,643
star
59

vscode-extension-samples

Sample code illustrating the VS Code extension API.
TypeScript
8,628
star
60

inshellisense

IDE style command line auto complete
TypeScript
8,402
star
61

reverse-proxy

A toolkit for developing high-performance HTTP reverse proxy applications.
C#
8,398
star
62

reactxp

Library for cross-platform app development.
TypeScript
8,289
star
63

WSL2-Linux-Kernel

The source for the Linux kernel used in Windows Subsystem for Linux 2 (WSL2)
C
8,037
star
64

ailab

Experience, Learn and Code the latest breakthrough innovations with Microsoft AI
C#
7,699
star
65

c9-python-getting-started

Sample code for Channel 9 Python for Beginners course
Jupyter Notebook
7,642
star
66

UFO

A UI-Focused Agent for Windows OS Interaction.
Python
7,633
star
67

cpprestsdk

The C++ REST SDK is a Microsoft project for cloud-based client-server communication in native code using a modern asynchronous C++ API design. This project aims to help C++ developers connect to and interact with services.
C++
7,573
star
68

botframework-sdk

Bot Framework provides the most comprehensive experience for building conversation applications.
JavaScript
7,484
star
69

azuredatastudio

Azure Data Studio is a data management and development tool with connectivity to popular cloud and on-premises databases. Azure Data Studio supports Windows, macOS, and Linux, with immediate capability to connect to Azure SQL and SQL Server. Browse the extension library for more database support options including MySQL, PostreSQL, and MongoDB.
TypeScript
7,182
star
70

winget-pkgs

The Microsoft community Windows Package Manager manifest repository
6,981
star
71

Windows-driver-samples

This repo contains driver samples prepared for use with Microsoft Visual Studio and the Windows Driver Kit (WDK). It contains both Universal Windows Driver and desktop-only driver samples.
C
6,924
star
72

winfile

Original Windows File Manager (winfile) with enhancements
C
6,437
star
73

WinObjC

Objective-C for Windows
C
6,241
star
74

SandDance

Visually explore, understand, and present your data.
TypeScript
6,091
star
75

VFSForGit

Virtual File System for Git: Enable Git at Enterprise Scale
C#
5,979
star
76

GSL

Guidelines Support Library
C++
5,957
star
77

MixedRealityToolkit-Unity

This repository is for the legacy Mixed Reality Toolkit (MRTK) v2. For the latest version of the MRTK please visit https://github.com/MixedRealityToolkit/MixedRealityToolkit-Unity
C#
5,943
star
78

fluentui-system-icons

Fluent System Icons are a collection of familiar, friendly and modern icons from Microsoft.
HTML
5,934
star
79

vscode-go

An extension for VS Code which provides support for the Go language. We have moved to https://github.com/golang/vscode-go
TypeScript
5,932
star
80

microsoft-ui-xaml

Windows UI Library: the latest Windows 10 native controls and Fluent styles for your applications
5,861
star
81

vscode-recipes

JavaScript
5,859
star
82

rushstack

Monorepo for tools developed by the Rush Stack community
TypeScript
5,840
star
83

MMdnn

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
Python
5,782
star
84

vscode-docs

Public documentation for Visual Studio Code
Markdown
5,650
star
85

ethr

Ethr is a Comprehensive Network Measurement Tool for TCP, UDP & ICMP.
Go
5,642
star
86

FASTER

Fast persistent recoverable log and key-value store + cache, in C# and C++.
C#
5,630
star
87

vscode-cpptools

Official repository for the Microsoft C/C++ extension for VS Code.
TypeScript
5,501
star
88

DirectX-Graphics-Samples

This repo contains the DirectX Graphics samples that demonstrate how to build graphics intensive applications on Windows.
C++
5,440
star
89

promptbase

All things prompt engineering
Python
5,367
star
90

BosqueLanguage

The Bosque programming language is an experiment in regularized design for a machine assisted rapid and reliable software development lifecycle.
TypeScript
5,282
star
91

TaskWeaver

A code-first agent framework for seamlessly planning and executing data analytics tasks.
Python
5,258
star
92

Detours

Detours is a software package for monitoring and instrumenting API calls on Windows. It is distributed in source code form.
C++
5,139
star
93

tsyringe

Lightweight dependency injection container for JavaScript/TypeScript
TypeScript
5,104
star
94

DeepSpeedExamples

Example models using DeepSpeed
Python
5,092
star
95

SynapseML

Simple and Distributed Machine Learning
Scala
5,041
star
96

Windows-classic-samples

This repo contains samples that demonstrate the API used in Windows classic desktop applications.
5,040
star
97

sudo

It's sudo, for Windows
Rust
4,998
star
98

TypeScript-Handbook

Deprecated, please use the TypeScript-Website repo instead
JavaScript
4,883
star
99

vscode-dev-containers

NOTE: Most of the contents of this repository have been migrated to the new devcontainers GitHub org (https://github.com/devcontainers). See https://github.com/devcontainers/template-starter and https://github.com/devcontainers/feature-starter for information on creating your own!
Shell
4,713
star
100

tsdoc

A doc comment standard for TypeScript
TypeScript
4,705
star