• Stars
    star
    14,132
  • Rank 2,142 (Top 0.05 %)
  • Language
    Python
  • License
    MIT License
  • Created over 4 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Bringing Old Photo Back to Life (CVPR 2020 oral)

Old Photo Restoration (Official PyTorch Implementation)

Project Page | Paper (CVPR version) | Paper (Journal version) | Pretrained Model | Colab Demo | Replicate Demo & Docker Image πŸ”₯

Bringing Old Photos Back to Life, CVPR2020 (Oral)

Old Photo Restoration via Deep Latent Space Translation, TPAMI 2022

Ziyu Wan1, Bo Zhang2, Dongdong Chen3, Pan Zhang4, Dong Chen2, Jing Liao1, Fang Wen2
1City University of Hong Kong, 2Microsoft Research Asia, 3Microsoft Cloud AI, 4USTC

✨ News

2022.3.31: Our new work regarding old film restoration will be published in CVPR 2022. For more details, please refer to the project website and github repo.

The framework now supports the restoration of high-resolution input.

Training code is available and welcome to have a try and learn the training details.

You can now play with our Colab and try it on your photos.

Requirement

The code is tested on Ubuntu with Nvidia GPUs and CUDA installed. Python>=3.6 is required to run the code.

Installation

Clone the Synchronized-BatchNorm-PyTorch repository for

cd Face_Enhancement/models/networks/
git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
cd ../../../
cd Global/detection_models
git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
cd ../../

Download the landmark detection pretrained model

cd Face_Detection/
wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
bzip2 -d shape_predictor_68_face_landmarks.dat.bz2
cd ../

Download the pretrained model, put the file Face_Enhancement/checkpoints.zip under ./Face_Enhancement, and put the file Global/checkpoints.zip under ./Global. Then unzip them respectively.

cd Face_Enhancement/
wget https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/releases/download/v1.0/face_checkpoints.zip
unzip face_checkpoints.zip
cd ../
cd Global/
wget https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/releases/download/v1.0/global_checkpoints.zip
unzip global_checkpoints.zip
cd ../

Install dependencies:

pip install -r requirements.txt

πŸš€ How to use?

Note: GPU can be set 0 or 0,1,2 or 0,2; use -1 for CPU

1) Full Pipeline

You could easily restore the old photos with one simple command after installation and downloading the pretrained model.

For images without scratches:

python run.py --input_folder [test_image_folder_path] \
              --output_folder [output_path] \
              --GPU 0

For scratched images:

python run.py --input_folder [test_image_folder_path] \
              --output_folder [output_path] \
              --GPU 0 \
              --with_scratch

For high-resolution images with scratches:

python run.py --input_folder [test_image_folder_path] \
              --output_folder [output_path] \
              --GPU 0 \
              --with_scratch \
              --HR

Note: Please try to use the absolute path. The final results will be saved in ./output_path/final_output/. You could also check the produced results of different steps in output_path.

2) Scratch Detection

Currently we don't plan to release the scratched old photos dataset with labels directly. If you want to get the paired data, you could use our pretrained model to test the collected images to obtain the labels.

cd Global/
python detection.py --test_path [test_image_folder_path] \
                    --output_dir [output_path] \
                    --input_size [resize_256|full_size|scale_256]

3) Global Restoration

A triplet domain translation network is proposed to solve both structured degradation and unstructured degradation of old photos.

cd Global/
python test.py --Scratch_and_Quality_restore \
               --test_input [test_image_folder_path] \
               --test_mask [corresponding mask] \
               --outputs_dir [output_path]

python test.py --Quality_restore \
               --test_input [test_image_folder_path] \
               --outputs_dir [output_path]

4) Face Enhancement

We use a progressive generator to refine the face regions of old photos. More details could be found in our journal submission and ./Face_Enhancement folder.

NOTE: This repo is mainly for research purpose and we have not yet optimized the running performance.

Since the model is pretrained with 256*256 images, the model may not work ideally for arbitrary resolution.

5) GUI

A user-friendly GUI which takes input of image by user and shows result in respective window.

How it works:

  1. Run GUI.py file.
  2. Click browse and select your image from test_images/old_w_scratch folder to remove scratches.
  3. Click Modify Photo button.
  4. Wait for a while and see results on GUI window.
  5. Exit window by clicking Exit Window and get your result image in output folder.

How to train?

1) Create Training File

Put the folders of VOC dataset, collected old photos (e.g., Real_L_old and Real_RGB_old) into one shared folder. Then

cd Global/data/
python Create_Bigfile.py

Note: Remember to modify the code based on your own environment.

2) Train the VAEs of domain A and domain B respectively

cd ..
python train_domain_A.py --use_v2_degradation --continue_train --training_dataset domain_A --name domainA_SR_old_photos --label_nc 0 --loadSize 256 --fineSize 256 --dataroot [your_data_folder] --no_instance --resize_or_crop crop_only --batchSize 100 --no_html --gpu_ids 0,1,2,3 --self_gen --nThreads 4 --n_downsample_global 3 --k_size 4 --use_v2 --mc 64 --start_r 1 --kl 1 --no_cgan --outputs_dir [your_output_folder] --checkpoints_dir [your_ckpt_folder]

python train_domain_B.py --continue_train --training_dataset domain_B --name domainB_old_photos --label_nc 0 --loadSize 256 --fineSize 256 --dataroot [your_data_folder]  --no_instance --resize_or_crop crop_only --batchSize 120 --no_html --gpu_ids 0,1,2,3 --self_gen --nThreads 4 --n_downsample_global 3 --k_size 4 --use_v2 --mc 64 --start_r 1 --kl 1 --no_cgan --outputs_dir [your_output_folder]  --checkpoints_dir [your_ckpt_folder]

Note: For the --name option, please ensure your experiment name contains "domainA" or "domainB", which will be used to select different dataset.

3) Train the mapping network between domains

Train the mapping without scratches:

python train_mapping.py --use_v2_degradation --training_dataset mapping --use_vae_which_epoch 200 --continue_train --name mapping_quality --label_nc 0 --loadSize 256 --fineSize 256 --dataroot [your_data_folder] --no_instance --resize_or_crop crop_only --batchSize 80 --no_html --gpu_ids 0,1,2,3 --nThreads 8 --load_pretrainA [ckpt_of_domainA_SR_old_photos] --load_pretrainB [ckpt_of_domainB_old_photos] --l2_feat 60 --n_downsample_global 3 --mc 64 --k_size 4 --start_r 1 --mapping_n_block 6 --map_mc 512 --use_l1_feat --niter 150 --niter_decay 100 --outputs_dir [your_output_folder] --checkpoints_dir [your_ckpt_folder]

Traing the mapping with scraches:

python train_mapping.py --no_TTUR --NL_res --random_hole --use_SN --correlation_renormalize --training_dataset mapping --NL_use_mask --NL_fusion_method combine --non_local Setting_42 --use_v2_degradation --use_vae_which_epoch 200 --continue_train --name mapping_scratch --label_nc 0 --loadSize 256 --fineSize 256 --dataroot [your_data_folder] --no_instance --resize_or_crop crop_only --batchSize 36 --no_html --gpu_ids 0,1,2,3 --nThreads 8 --load_pretrainA [ckpt_of_domainA_SR_old_photos] --load_pretrainB [ckpt_of_domainB_old_photos] --l2_feat 60 --n_downsample_global 3 --mc 64 --k_size 4 --start_r 1 --mapping_n_block 6 --map_mc 512 --use_l1_feat --niter 150 --niter_decay 100 --outputs_dir [your_output_folder] --checkpoints_dir [your_ckpt_folder] --irregular_mask [absolute_path_of_mask_file]

Traing the mapping with scraches (Multi-Scale Patch Attention for HR input):

python train_mapping.py --no_TTUR --NL_res --random_hole --use_SN --correlation_renormalize --training_dataset mapping --NL_use_mask --NL_fusion_method combine --non_local Setting_42 --use_v2_degradation --use_vae_which_epoch 200 --continue_train --name mapping_Patch_Attention --label_nc 0 --loadSize 256 --fineSize 256 --dataroot [your_data_folder] --no_instance --resize_or_crop crop_only --batchSize 36 --no_html --gpu_ids 0,1,2,3 --nThreads 8 --load_pretrainA [ckpt_of_domainA_SR_old_photos] --load_pretrainB [ckpt_of_domainB_old_photos] --l2_feat 60 --n_downsample_global 3 --mc 64 --k_size 4 --start_r 1 --mapping_n_block 6 --map_mc 512 --use_l1_feat --niter 150 --niter_decay 100 --outputs_dir [your_output_folder] --checkpoints_dir [your_ckpt_folder] --irregular_mask [absolute_path_of_mask_file] --mapping_exp 1

Citation

If you find our work useful for your research, please consider citing the following papers :)

@inproceedings{wan2020bringing,
title={Bringing Old Photos Back to Life},
author={Wan, Ziyu and Zhang, Bo and Chen, Dongdong and Zhang, Pan and Chen, Dong and Liao, Jing and Wen, Fang},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={2747--2757},
year={2020}
}
@article{wan2020old,
  title={Old Photo Restoration via Deep Latent Space Translation},
  author={Wan, Ziyu and Zhang, Bo and Chen, Dongdong and Zhang, Pan and Chen, Dong and Liao, Jing and Wen, Fang},
  journal={arXiv preprint arXiv:2009.07047},
  year={2020}
}

If you are also interested in the legacy photo/video colorization, please refer to this work.

Maintenance

This project is currently maintained by Ziyu Wan and is for academic research use only. If you have any questions, feel free to contact [email protected].

License

The codes and the pretrained model in this repository are under the MIT license as specified by the LICENSE file. We use our labeled dataset to train the scratch detection model.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

More Repositories

1

vscode

Visual Studio Code
TypeScript
163,565
star
2

PowerToys

Windows system utilities to maximize productivity
C#
110,602
star
3

TypeScript

TypeScript is a superset of JavaScript that compiles to clean JavaScript output.
TypeScript
100,730
star
4

terminal

The new Windows Terminal and the original Windows console host, all in the same place!
C++
94,835
star
5

Web-Dev-For-Beginners

24 Lessons, 12 Weeks, Get Started as a Web Developer
JavaScript
83,418
star
6

ML-For-Beginners

12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all
HTML
69,631
star
7

generative-ai-for-beginners

21 Lessons, Get Started Building with Generative AI πŸ”— https://microsoft.github.io/generative-ai-for-beginners/
Jupyter Notebook
64,519
star
8

playwright

Playwright is a framework for Web Testing and Automation. It allows testing Chromium, Firefox and WebKit with a single API.
TypeScript
64,013
star
9

monaco-editor

A browser based code editor
JavaScript
35,437
star
10

DeepSpeed

DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.
Python
35,130
star
11

AI-For-Beginners

12 Weeks, 24 Lessons, AI for All!
Jupyter Notebook
34,704
star
12

autogen

A programming framework for agentic AI πŸ€–
Jupyter Notebook
32,470
star
13

MS-DOS

The original sources of MS-DOS 1.25, 2.0, and 4.0 for reference purposes
Assembly
30,714
star
14

Data-Science-For-Beginners

10 Weeks, 20 Lessons, Data Science for All!
Jupyter Notebook
28,136
star
15

calculator

Windows Calculator: A simple yet powerful calculator that ships with Windows
C++
27,371
star
16

cascadia-code

This is a fun, new monospaced font that includes programming ligatures and is designed to enhance the modern look and feel of the Windows Terminal.
Python
25,726
star
17

JARVIS

JARVIS, a system to connect LLMs with ML community. Paper: https://arxiv.org/pdf/2303.17580.pdf
Python
23,519
star
18

api-guidelines

Microsoft REST API Guidelines
22,661
star
19

winget-cli

WinGet is the Windows Package Manager. This project includes a CLI (Command Line Interface), PowerShell modules, and a COM (Component Object Model) API (Application Programming Interface).
C++
20,495
star
20

unilm

Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities
Python
19,889
star
21

vcpkg

C++ Library Manager for Windows, Linux, and MacOS
CMake
19,600
star
22

fluentui

Fluent UI web represents a collection of utilities, React components, and web components for building web applications.
TypeScript
18,419
star
23

semantic-kernel

Integrate cutting-edge LLM technology quickly and easily into your apps
C#
17,792
star
24

graphrag

A modular graph-based Retrieval-Augmented Generation (RAG) system
Python
17,750
star
25

CNTK

Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit
C++
17,412
star
26

WSL

Issues found on WSL
PowerShell
17,372
star
27

LightGBM

A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
C++
16,470
star
28

AirSim

Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research
C++
16,327
star
29

react-native-windows

A framework for building native Windows apps with React.
C++
16,310
star
30

recommenders

Best Practices on Recommendation Systems
Python
16,075
star
31

IoT-For-Beginners

12 Weeks, 24 Lessons, IoT for All!
C++
15,360
star
32

qlib

Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.
Python
15,308
star
33

dotnet

This repo is the official home of .NET on GitHub. It's a great starting point to find many .NET OSS projects from Microsoft and the community, including many that are part of the .NET Foundation.
HTML
14,370
star
34

ai-edu

AI education materials for Chinese students, teachers and IT professionals.
HTML
13,485
star
35

pyright

Static Type Checker for Python
Python
13,195
star
36

nni

An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
Python
13,084
star
37

guidance

A guidance language for controlling large language models.
Jupyter Notebook
11,777
star
38

TypeScript-Node-Starter

A reference example for TypeScript and Node with a detailed README describing how to use the two together.
SCSS
11,314
star
39

Swin-Transformer

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows".
Python
11,187
star
40

TypeScript-React-Starter

A starter template for TypeScript and React with a detailed README describing how to use the two together.
TypeScript
11,081
star
41

frontend-bootcamp

Frontend Workshop from HTML/CSS/JS to TypeScript/React/Redux
TypeScript
10,807
star
42

mimalloc

mimalloc is a compact general purpose allocator with excellent performance.
C
10,532
star
43

windows-rs

Rust for Windows
Rust
10,411
star
44

wslg

Enabling the Windows Subsystem for Linux to include support for Wayland and X server related scenarios
C++
10,165
star
45

language-server-protocol

Defines a common protocol for language servers.
HTML
10,093
star
46

sql-server-samples

Azure Data SQL Samples - Official Microsoft GitHub Repository containing code samples for SQL Server, Azure SQL, Azure Synapse, and Azure SQL Edge
9,950
star
47

onnxruntime

ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator
C++
9,837
star
48

fast

The adaptive interface system for modern web experiences.
TypeScript
9,271
star
49

computervision-recipes

Best Practices, code samples, and documentation for Computer Vision.
Jupyter Notebook
9,264
star
50

napajs

Napa.js: a multi-threaded JavaScript runtime
C++
9,256
star
51

Windows-universal-samples

API samples for the Universal Windows Platform.
JavaScript
9,253
star
52

LoRA

Code for loralib, an implementation of "LoRA: Low-Rank Adaptation of Large Language Models"
Python
9,145
star
53

fluentui-emoji

A collection of familiar, friendly, and modern emoji from Microsoft
Python
9,068
star
54

vscode-tips-and-tricks

Collection of helpful tips and tricks for VS Code.
9,038
star
55

playwright-python

Python version of the Playwright testing and automation library.
Python
8,990
star
56

STL

MSVC's implementation of the C++ Standard Library.
C++
8,978
star
57

react-native-code-push

React Native module for CodePush
C
8,643
star
58

vscode-extension-samples

Sample code illustrating the VS Code extension API.
TypeScript
8,628
star
59

inshellisense

IDE style command line auto complete
TypeScript
8,402
star
60

reverse-proxy

A toolkit for developing high-performance HTTP reverse proxy applications.
C#
8,398
star
61

reactxp

Library for cross-platform app development.
TypeScript
8,289
star
62

WSL2-Linux-Kernel

The source for the Linux kernel used in Windows Subsystem for Linux 2 (WSL2)
C
8,037
star
63

ailab

Experience, Learn and Code the latest breakthrough innovations with Microsoft AI
C#
7,699
star
64

c9-python-getting-started

Sample code for Channel 9 Python for Beginners course
Jupyter Notebook
7,642
star
65

UFO

A UI-Focused Agent for Windows OS Interaction.
Python
7,633
star
66

cpprestsdk

The C++ REST SDK is a Microsoft project for cloud-based client-server communication in native code using a modern asynchronous C++ API design. This project aims to help C++ developers connect to and interact with services.
C++
7,573
star
67

botframework-sdk

Bot Framework provides the most comprehensive experience for building conversation applications.
JavaScript
7,484
star
68

azuredatastudio

Azure Data Studio is a data management and development tool with connectivity to popular cloud and on-premises databases. Azure Data Studio supports Windows, macOS, and Linux, with immediate capability to connect to Azure SQL and SQL Server. Browse the extension library for more database support options including MySQL, PostreSQL, and MongoDB.
TypeScript
7,182
star
69

winget-pkgs

The Microsoft community Windows Package Manager manifest repository
6,981
star
70

Windows-driver-samples

This repo contains driver samples prepared for use with Microsoft Visual Studio and the Windows Driver Kit (WDK). It contains both Universal Windows Driver and desktop-only driver samples.
C
6,924
star
71

winfile

Original Windows File Manager (winfile) with enhancements
C
6,437
star
72

nlp-recipes

Natural Language Processing Best Practices & Examples
Python
6,379
star
73

WinObjC

Objective-C for Windows
C
6,241
star
74

SandDance

Visually explore, understand, and present your data.
TypeScript
6,091
star
75

VFSForGit

Virtual File System for Git: Enable Git at Enterprise Scale
C#
5,979
star
76

GSL

Guidelines Support Library
C++
5,957
star
77

MixedRealityToolkit-Unity

This repository is for the legacy Mixed Reality Toolkit (MRTK) v2. For the latest version of the MRTK please visit https://github.com/MixedRealityToolkit/MixedRealityToolkit-Unity
C#
5,943
star
78

fluentui-system-icons

Fluent System Icons are a collection of familiar, friendly and modern icons from Microsoft.
HTML
5,934
star
79

vscode-go

An extension for VS Code which provides support for the Go language. We have moved to https://github.com/golang/vscode-go
TypeScript
5,932
star
80

microsoft-ui-xaml

Windows UI Library: the latest Windows 10 native controls and Fluent styles for your applications
5,861
star
81

vscode-recipes

JavaScript
5,859
star
82

rushstack

Monorepo for tools developed by the Rush Stack community
TypeScript
5,840
star
83

MMdnn

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
Python
5,782
star
84

vscode-docs

Public documentation for Visual Studio Code
Markdown
5,650
star
85

ethr

Ethr is a Comprehensive Network Measurement Tool for TCP, UDP & ICMP.
Go
5,642
star
86

FASTER

Fast persistent recoverable log and key-value store + cache, in C# and C++.
C#
5,630
star
87

vscode-cpptools

Official repository for the Microsoft C/C++ extension for VS Code.
TypeScript
5,501
star
88

DirectX-Graphics-Samples

This repo contains the DirectX Graphics samples that demonstrate how to build graphics intensive applications on Windows.
C++
5,440
star
89

promptbase

All things prompt engineering
Python
5,367
star
90

BosqueLanguage

The Bosque programming language is an experiment in regularized design for a machine assisted rapid and reliable software development lifecycle.
TypeScript
5,282
star
91

TaskWeaver

A code-first agent framework for seamlessly planning and executing data analytics tasks.
Python
5,258
star
92

Detours

Detours is a software package for monitoring and instrumenting API calls on Windows. It is distributed in source code form.
C++
5,139
star
93

tsyringe

Lightweight dependency injection container for JavaScript/TypeScript
TypeScript
5,104
star
94

DeepSpeedExamples

Example models using DeepSpeed
Python
5,092
star
95

SynapseML

Simple and Distributed Machine Learning
Scala
5,041
star
96

Windows-classic-samples

This repo contains samples that demonstrate the API used in Windows classic desktop applications.
5,040
star
97

sudo

It's sudo, for Windows
Rust
4,998
star
98

TypeScript-Handbook

Deprecated, please use the TypeScript-Website repo instead
JavaScript
4,883
star
99

vscode-dev-containers

NOTE: Most of the contents of this repository have been migrated to the new devcontainers GitHub org (https://github.com/devcontainers). See https://github.com/devcontainers/template-starter and https://github.com/devcontainers/feature-starter for information on creating your own!
Shell
4,713
star
100

tsdoc

A doc comment standard for TypeScript
TypeScript
4,705
star