• Stars
    star
    171
  • Rank 222,266 (Top 5 %)
  • Language
    Jupyter Notebook
  • Created almost 9 years ago
  • Updated about 7 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Probability and Statistics Using Python Data Science Masters Course at UCSD (DSE 210)

DSE210_Probability_Statistics_Python

Looks best on google chrome. Probability and Statistics Using Python: Data Science Masters Course (DSE 210). Highly similar to UCSD's "CSE 250B. Principles of Artificial Intelligence: Learning Algorithms" course. Most of the early portions of the class are worksheet based, but the later portions are mostly in ipython notebook (numpy, sklearn, pandas).

IPython Notebooks for Assignments (From Newest to Oldest)

  • [Hypothesis testing](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/10_Hypothesis_Testing.ipynb) (1, 2, 6, 7, 8, 9, 10)
  • [Sampling](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/9_Sampling.ipynb) (1, 3, 5, 8, 9, 10, 11)
  • [Matrix factorization](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/8_Matrix_Factorization.ipynb) # 1,2,3,4 (PCA Projection, python),5 (PCA Projection, python)
  • [Clustering](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/7_Clustering.ipynb)
  • [Generative models 2](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/6_Generative_Models_number_9-FINAL.ipynb) Gaussian Classifier
  • [Generative models 1](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/5_Generative_Models_I_Class_Generators.ipynb) (object oriented, next up is pandas and sql)
  • [Random variable, expectation, and variance](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/4_RandomVariable_Expectation_Variance.ipynb) (1,2,3,6,7a,7c,8,12)
  • [Multiple events, conditioning, and independence](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/3_Multiple_events_%20conditioning_and_independence.ipynb) (1,2,3,5,6,10,15a,16)
  • [Probability spaces](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/2_Probability_spaces.ipynb) (1a,1b,1e,2,3,4a,5,6,7,14,16)
  • [Sets and counting](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/1_Sets_and_Counting_mGalarnyk.ipynb) (1,2,3,4,5,6)
  • Worksheets (From Newest to Oldest)

  • [Hypothesis testing](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/worksheets/worksheet10Hypothesis_testing.pdf) (1, 2, 6, 7, 8, 9, 10)
  • [Sampling](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/worksheets/worksheet9Sampling.pdf) (1, 3, 5, 8, 9, 10, 11)
  • [Matrix factorization](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/worksheets/worksheet8Matrix_factorization.pdf) (1,2,3,4,5)
  • [Clustering](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/worksheets/worksheet7Clustering.pdf) (all)
  • [Generative models 2](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/worksheets/worksheet6GenerativeModels2.pdf) (#9 python based Gaussian Classifier)
  • [Generative models 1](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/worksheets/worksheet5Generative_models_1.pdf) (all)
  • [Random variable, expectation, and variance](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/worksheets/worksheet4Random_variable_expectation_and_variance.pdf) (1,2,3,6,7a,7c,8,12)
  • [Multiple events, conditioning, and independence](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/worksheets/worksheet3_Multiple_events_%20conditioning_and_independence.pdf) (1,2,3,5,6,10,15a,16)
  • [Probability spaces](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/worksheets/worksheet2_Probability_spaces.pdf) (1a,1b,1e,2,3,4a,5,6,7,14,16)
  • [Sets and counting](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/worksheets/worksheet1_Sets_and_counting.pdf) (1,2,3,4,5,6)
  • Other (Iris Dataset plus other scratch worksheet)

  • [K-Means, PCA, and Dendrogram on the Animals with Attributes Dataset](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/K-Means%2C%20PCA%2C%20and%20Dendrogram%20on%20the%20Animals%20with%20Attributes%20Dataset.ipynb)
  • [Iris Dataset](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/IRIS%20data%20set.ipynb)
  • [Scratch stats problems](https://github.com/mGalarnyk/DSE210_Probability_Statistics_Python/blob/master/Other_worksheet.pdf)
  • More Repositories

    1

    datasciencecoursera

    Data Science Repo and blog for John Hopkins Coursera Courses. Please let me know if you have any questions.
    HTML
    2,201
    star
    2

    Python_Tutorials

    Python tutorials in both Jupyter Notebook and youtube format.
    Jupyter Notebook
    1,160
    star
    3

    Installations_Mac_Ubuntu_Windows

    Installations for Data Science. Anaconda, RStudio, Spark, TensorFlow, AWS (Amazon Web Services).
    Jupyter Notebook
    233
    star
    4

    DSE200_Python_for_Data_Analysis

    Homework/Classwork for my DSE 200 Python for Data Analysis Class at UC San Diego (UCSD)
    Jupyter Notebook
    100
    star
    5

    DataScienceInterview

    Interview stuff for friends
    HTML
    83
    star
    6

    DSE220_Machine_Learning

    Repo for my graduate data science machine learning class at UCSD (UC San Diego). This course provides a broad introduction to the practical side of machine-learning and data analysis. The topics covered in this class include topics in supervised learning, such as k-nearest neighbor classifiers, decision trees, boosting and perceptrons, and topics in unsupervised learning, such as k-means, PCA and Gaussian mixture models.
    Jupyter Notebook
    52
    star
    7

    DSE230_Data_Analysis_Using_Hadoop_and_Spark_UCSD

    Map-reduce, streaming analysis, and external memory algorithms and their implementation using the Hadoop and its eco-system: HBase, Hive, Pig and Spark. The class will include assignment of analyzing large existing databases.
    Jupyter Notebook
    32
    star
    8

    DSGO_IntroductionScikitLearn

    Jupyter Notebook
    23
    star
    9

    Machine_Learning_Coursera

    Coursera machine learning specialization coursework (python based, University of Washington).
    Jupyter Notebook
    19
    star
    10

    DSE201_Database_Management_Systems

    Database Management Systems Data Science Masters Course (DSE 201)
    Jupyter Notebook
    12
    star
    11

    Tutorial_Data

    This is a repo to keep the data for my tutorials. This is to make it so people dont need a Kaggle account and such as much as possible.
    7
    star
    12

    UCSD_EXT_Data_Analytics_Python

    Legally allowable public portion of the UCSD Extension course: Data Analytics Using Python (CSE-41204)
    Jupyter Notebook
    6
    star
    13

    Machine_Learning_Froyo

    Jupyter Notebook
    3
    star
    14

    LinkedInLearningResources

    Resources for my LinkedIn Learning Courses
    1
    star
    15

    mgalarny

    DSE 2015
    Jupyter Notebook
    1
    star
    16

    web_development

    New repo for my web development certificate through UCSD extension. I am looking forward to the new courses!
    JavaScript
    1
    star