• Stars
    star
    119
  • Rank 297,930 (Top 6 %)
  • Language
    Python
  • Created almost 3 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

TOIS'23, Personalized Prompt Learning for Explainable Recommendation

PEPLER (PErsonalized Prompt Learning for Explainable Recommendation)

Paper

A T5 version that can perform multiple recommendation tasks is available at POD!

A small unpretrained Transformer version is available at PETER!

A small ecosystem for Recommender Systems-based Natural Language Generation is available at NLG4RS!

Datasets to download

  • TripAdvisor Hong Kong
  • Amazon Movies & TV
  • Yelp 2019

For those who are interested in how to obtain (feature, opinion, template, sentiment) quadruples, please refer to Sentires-Guide.

Usage

Below are examples of how to run PEPLER (continuous prompt, discrete prompt, MF regularization and MLP regularization).

python -u main.py \
--data_path ../TripAdvisor/reviews.pickle \
--index_dir ../TripAdvisor/1/ \
--cuda \
--checkpoint ./tripadvisor/ >> tripadvisor.log

python -u discrete.py \
--data_path ../TripAdvisor/reviews.pickle \
--index_dir ../TripAdvisor/1/ \
--cuda \
--checkpoint ./tripadvisord/ >> tripadvisord.log

python -u reg.py \
--data_path ../TripAdvisor/reviews.pickle \
--index_dir ../TripAdvisor/1/ \
--cuda \
--use_mf \
--checkpoint ./tripadvisormf/ >> tripadvisormf.log

python -u reg.py \
--data_path ../TripAdvisor/reviews.pickle \
--index_dir ../TripAdvisor/1/ \
--cuda \
--rating_reg 1 \
--checkpoint ./tripadvisormlp/ >> tripadvisormlp.log

Code dependencies

  • Python 3.6
  • PyTorch 1.6
  • transformers 4.18.0

Code reference

Citation

@article{TOIS23-PEPLER,
	title={Personalized Prompt Learning for Explainable Recommendation},
	author={Li, Lei and Zhang, Yongfeng and Chen, Li},
	journal={ACM Transactions on Information Systems (TOIS)},
	year={2023}
}