MarlGrid
Gridworld for MARL experiments, based on MiniGrid.
Training multiple independent learners
Pre-built environment
MarlGrid comes with a few pre-built environments (see marlgrid/envs):
MarlGrid-3AgentCluttered11x11-v0
MarlGrid-3AgentCluttered15x15-v0
MarlGrid-2AgentEmpty9x9-v0
MarlGrid-3AgentEmpty9x9-v0
MarlGrid-4AgentEmpty9x9-v0
(as of v0.0.2)
Custom environment
Create an RL agent (e.g. TestRLAgent
subclassing marlgrid.agents.LearningAgent
) that implements:
action_step(self, obs)
,save_step(self, *transition_values)
,start_episode(self)
(optional),end_episode(self)
(optional),
Then multiple such agents can be trained in a MARLGrid environment like ClutteredMultiGrid
:
agents = marlgrid.agents.IndependentLearners(
TestRLAgent(),
TestRLAgent(),
TestRLAgent()
)
env = ClutteredMultiGrid(agents, grid_size=15, n_clutter=10)
for i_episode in range(N_episodes):
obs_array = env.reset()
with agents.episode():
episode_over = False
while not episode_over:
# env.render()
# Get an array with actions for each agent.
action_array = agents.action_step(obs_array)
# Step the multi-agent environment
next_obs_array, reward_array, done, _ = env.step(action_array)
# Save the transition data to replay buffers, if necessary
agents.save_step(obs_array, action_array, next_obs_array, reward_array, done)
obs_array = next_obs_array
episode_over = done
# or if "done" is per-agent:
episode_over = all(done) # or any(done)