• Stars
    star
    202
  • Rank 193,691 (Top 4 %)
  • Language
    Rust
  • License
    Other
  • Created almost 8 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Write Telegram bots in Rust with Tokio and Futures

Telebot - Telegram Bot Library for Rust

Travis Build Status License MIT Crates.io doc.rs

This library allows you to write a Telegram Bot in the Rust language. It's an almost complete wrapper for the Telegram Bot API and uses hyper to send requests to the Telegram server. Each Telegram function call returns a future which carries the actual bot and the answer.

Usage

Add this to your Cargo.toml

[dependencies]
telebot = "0.3.1"

How it works

This example shows the basic usage of the telebot library. It creates a new handler for a simple "/reply" command and replies the received text. The tokio eventloop polls every 200ms for new updates and matches them with the registered events. If the command matches with "/reply" it will call the function and execute the returned future.

use telebot::Bot;
use futures::stream::Stream;
use std::env;

// import all available functions
use telebot::functions::*;

fn main() {
    // Create the bot
    let mut bot = Bot::new(&env::var("TELEGRAM_BOT_KEY").unwrap()).update_interval(200);

    // Register a reply command which answers a message
    let handle = bot.new_cmd("/reply")
        .and_then(|(bot, msg)| {
            let mut text = msg.text.unwrap().clone();
            if text.is_empty() {
                text = "<empty>".into();
            }

            bot.message(msg.chat.id, text).send()
        })
        .for_each(|_| Ok(()));

    bot.run_with(handle);
}

Additional example

The former example was very simple with just one handler and no error handling. If you want to see a further explained and illustrated one, please see here.

Find a Telegram function in the source code

This crate uses custom derive to generate functions of the Telegram API. Therefore each complete function is described with a struct in functions.rs and the supplemental crate telebot-derive generates the complete signature. In order to find a function, the struct signature can be used. For example consider sendLocation:

/// Use this method to send point on the map. On success, the sent Message is returned.
#[derive(TelegramFunction, Serialize)]
#[call = "sendLocation"]
#[answer = "Message"]
#[function = "location"]
pub struct SendLocation {
    chat_id: u32,
    latitude: f32,
    longitude: f32,
#[serde(skip_serializing_if="Option::is_none")]
    disable_notification: Option<bool>,
#[serde(skip_serializing_if="Option::is_none")]
    reply_to_message_id: Option<u32>,
#[serde(skip_serializing_if="Option::is_none")]
    reply_markup: Option<NotImplemented>
}

The field "function" defines the name of the function in the local API. Each optional field in the struct can be changed by calling an additional function with the name of the field. So for example to send the location of Paris to chat 432432 without notification: bot.location(432432, 48.8566, 2.3522).disable_notification(true).send()

License

Licensed under either of

at your option.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.