Universal Source Separation (USS) with Weakly labelled Data
This is the PyTorch implementation of the Universal Source Separation with Weakly labelled Data [1]. The USS system can automatically detect and separate sound classes from a real recording. The USS system can separate up to hundreds of sound classes sound classes in a hierarchical ontology structure. The USS system is trained on the weakly labelled AudioSet dataset only. Here is a demo:
Fig. The hierarchical separation result of the trailer of Harry Potter and the Sorcerer's Stone. Copyright: https://www.youtube.com/watch?v=VyHV0BRtdxo
1. Installation
Prepare environment (optional)
conda create -n uss python=3.8
conda activate uss
Install the package
pip install uss
2. Separate Your Favorite Audio
2.1 Download test audio (optional)
wget -O "harry_potter.flac" "https://huggingface.co/RSNuts/Universal_Source_Separation/resolve/main/uss_material/harry_potter.flac"
2.2 Detect and separate sound classes in hierarchical levels (default)
uss -i "harry_potter.flac"
2.3 The same as default
uss -i "harry_potter.flac" --levels 1 2 3
2.4 Separate by class IDs
uss -i "harry_potter.flac" --class_ids 0 1 2 3 4
2.5 Separate by queries
Download query audios (optional)
wget -O "queries.zip" "https://huggingface.co/RSNuts/Universal_Source_Separation/resolve/main/uss_material/queries.zip"
unzip queries.zip
Do separation
uss -i "harry_potter.flac" --queries_dir "queries/speech"
3. Git Clone the Repo and do Inference
Users could also git clone this repo and run the inference in the repo. This will let users to have more flexibility to modify the inference code.
3.1 Set up environment
conda create -n uss python=3.8
conda activate uss
pip install -r requirements.txt
3.2 Inference
Download our pretrained checkpoint:
wget -O "pretrained.ckpt" "https://huggingface.co/RSNuts/Universal_Source_Separation/resolve/main/uss_material/ss_model%3Dresunet30%2Cquerynet%3Dat_soft%2Cdata%3Dfull%2Cdevices%3D8%2Cstep%3D1000000.ckpt"
Then perform the inference:
CUDA_VISIBLE_DEVICES=0 python3 uss/inference.py \
--audio_path=./resources/harry_potter.flac \
--levels 1 2 3 \
--config_yaml="./scripts/train/ss_model=resunet30,querynet=at_soft,data=full.yaml" \
--checkpoint_path="pretrained.ckpt"
4. Train the USS system from scratch
4.0 Download dataset
Download the AudioSet dataset from the internet. The total size of AudioSet is around 1.1 TB. For reproducibility, our downloaded dataset can be accessed at: link: https://pan.baidu.com/s/13WnzI1XDSvqXZQTS-Kqujg, password: 0vc2. Users may only download the balanced set (10.36 Gb, 1% of the full set) to train a baseline system.
The downloaded data looks like:
dataset_root ├── audios │ ├── balanced_train_segments │ | └── ... (~20550 wavs, the number can be different from time to time) │ ├── eval_segments │ | └── ... (~18887 wavs) │ └── unbalanced_train_segments │ ├── unbalanced_train_segments_part00 │ | └── ... (~46940 wavs) │ ... │ └── unbalanced_train_segments_part40 │ └── ... (~39137 wavs) └── metadata ├── balanced_train_segments.csv ├── class_labels_indices.csv ├── eval_segments.csv ├── qa_true_counts.csv └── unbalanced_train_segments.csv
Notice there can be missing files on YouTube, so the numebr of files downloaded by users can be different from time to time. Our downloaded version contains 20550 / 22160 of the balaned training subset, 1913637 / 2041789 of the unbalanced training subset, and 18887 / 20371 of the evaluation subset.
4.1 Pack waveforms into hdf5 files
Audio files in a subdirectory will be packed into an hdf5 file. There will be 1 balanced train + 41 unbalanced train + 1 evaluation hdf5 files in total.
./scripts/1_pack_waveforms_to_hdf5s.sh
The packed hdf5 files looks like:
workspaces/uss └── hdf5s └── waveforms (1.1 TB) ├── balanced_train.h5 ├── eval.h5 └── unbalanced_train ├── unbalanced_train_part00.h5 ... └── unbalanced_train_part40.h5
4.2 Create indexes for balanced training
Pack indexes into hdf5 files for balanced training.
./scripts/2_create_indexes.sh
The packed indexes files look like:
workspaces/uss └── hdf5s └── indexes (3.0 GB) ├── balanced_train.h5 ├── eval.h5 └── unbalanced_train ├── unbalanced_train_part00.h5 ... └── unbalanced_train_part40.h5
4.3 Create evaluation data
Create 100 2-second mixture and source pairs to evaluate the separation result of each sound class. There are in total 52,700 2-second pairs for 527 sound classes.
./scripts/3_create_evaluation_data.sh
The evaluation data look like:
workspaces/uss └── evaluation └── audioset ├── 2s_segments_balanced_train.csv ├── 2s_segments_test.csv ├── 2s_segments_balanced_train │ ├── class_id=0 │ │ └── ... (100 mixture + 100 clean) │ │... │ └── class_id=526 │ └── ... (100 mixture + 100 clean) └── 2s_segments_test ├── class_id=0 │ └── ... (100 mixture + 100 clean) │... └── class_id=526 └── ... (100 mixture + 100 clean)
4.4 Train
Train the universal source separation system.
./scripts/4_train.sh
Or simply execute:
WORKSPACE="workspaces/uss"
CUDA_VISIBLE_DEVICES=0 python3 uss/train.py \
--workspace=$WORKSPACE \
--config_yaml="./scripts/train/ss_model=resunet30,querynet=at_soft,data=balanced.yaml"
Citation
@article{kong2023universal, title={Universal Source Separation with Weakly Labelled Data}, author={Kong, Qiuqiang and Chen, Ke and Liu, Haohe and Du, Xingjian and Berg-Kirkpatrick, Taylor and Dubnov, Shlomo and Plumbley, Mark D}, journal={arXiv preprint arXiv:2305.07447}, year={2023} }