• Stars
    star
    3,603
  • Rank 12,304 (Top 0.3 %)
  • Language
    Python
  • License
    Other
  • Created over 5 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A high performance and generic framework for distributed DNN training

BytePS

Build Status License Pypi

BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on either TCP or RDMA network.

BytePS outperforms existing open-sourced distributed training frameworks by a large margin. For example, on BERT-large training, BytePS can achieve ~90% scaling efficiency with 256 GPUs (see below), which is much higher than Horovod+NCCL. In certain scenarios, BytePS can double the training speed compared with Horovod+NCCL.

News

  • BytePS paper has been accepted to OSDI'20. The code to reproduce the end-to-end evaluation is available here.
  • Support gradient compression.
  • v0.2.4
    • Fix compatibility issue with tf2 + standalone keras
    • Add support for tensorflow.keras
    • Improve robustness of broadcast
  • v0.2.3
    • Add DistributedDataParallel module for PyTorch
    • Fix the problem of different CPU tensor using the same name
    • Add skip_synchronize api for PyTorch
    • Add the option for lazy/non-lazy init
  • v0.2.0
    • Largely improve RDMA performance by enforcing page aligned memory.
    • Add IPC support for RDMA. Now support colocating servers and workers without sacrificing much performance.
    • Fix a hanging bug in BytePS server.
    • Fix RDMA-related segmentation fault problem during fork() (e.g., used by PyTorch data loader).
    • New feature: Enable mixing use of colocate and non-colocate servers, along with a smart tensor allocation strategy.
    • New feature: Add bpslaunch as the command to launch tasks.
    • Add support for pip install: pip3 install byteps

Performance

We show our experiment on BERT-large training, which is based on GluonNLP toolkit. The model uses mixed precision.

We use Tesla V100 32GB GPUs and set batch size equal to 64 per GPU. Each machine has 8 V100 GPUs (32GB memory) with NVLink-enabled. Machines are inter-connected with 100 Gbps RDMA network. This is the same hardware setup you can get on AWS.

BytePS achieves ~90% scaling efficiency for BERT-large with 256 GPUs. The code is available here. As a comparison, Horovod+NCCL has only ~70% scaling efficiency even after expert parameter tunning.

BERT-Large

With slower network, BytePS offers even more performance advantages -- up to 2x of Horovod+NCCL. You can find more evaluation results at performance.md.

Goodbye MPI, Hello Cloud

How can BytePS outperform Horovod by so much? One of the main reasons is that BytePS is designed for cloud and shared clusters, and throws away MPI.

MPI was born in the HPC world and is good for a cluster built with homogeneous hardware and for running a single job. However, cloud (or in-house shared clusters) is different.

This leads us to rethink the best communication strategy, as explained in here. In short, BytePS only uses NCCL inside a machine, while re-implements the inter-machine communication.

BytePS also incorporates many acceleration techniques such as hierarchical strategy, pipelining, tensor partitioning, NUMA-aware local communication, priority-based scheduling, etc.

Quick Start

We provide a step-by-step tutorial for you to run benchmark training tasks. The simplest way to start is to use our docker images. Refer to Documentations for how to launch distributed jobs and more detailed configurations. After you can start BytePS, read best practice to get the best performance.

Below, we explain how to install BytePS by yourself. There are two options.

Install by pip

pip3 install byteps

Build from source code

You can try out the latest features by directly installing from master branch:

git clone --recursive https://github.com/bytedance/byteps
cd byteps
python3 setup.py install

Notes for above two options:

  • BytePS assumes that you have already installed one or more of the following frameworks: TensorFlow / PyTorch / MXNet.
  • BytePS depends on CUDA and NCCL. You should specify the NCCL path with export BYTEPS_NCCL_HOME=/path/to/nccl. By default it points to /usr/local/nccl.
  • The installation requires gcc>=4.9. If you are working on CentOS/Redhat and have gcc<4.9, you can try yum install devtoolset-7 before everything else. In general, we recommend using gcc 4.9 for best compatibility (how to pin gcc).
  • RDMA support: During setup, the script will automatically detect the RDMA header file. If you want to use RDMA, make sure your RDMA environment has been properly installed and tested before install (install on Ubuntu-18.04).

Examples

Basic examples are provided under the example folder.

To reproduce the end-to-end evaluation in our OSDI'20 paper, find the code at this repo.

Use BytePS in Your Code

Though being totally different at its core, BytePS is highly compatible with Horovod interfaces (Thank you, Horovod community!). We chose Horovod interfaces in order to minimize your efforts for testing BytePS.

If your tasks only rely on Horovod's allreduce and broadcast, you should be able to switch to BytePS in 1 minute. Simply replace import horovod.tensorflow as hvd by import byteps.tensorflow as bps, and then replace all hvd in your code by bps. If your code invokes hvd.allreduce directly, you should also replace it by bps.push_pull.

Many of our examples were copied from Horovod and modified in this way. For instance, compare the MNIST example for BytePS and Horovod.

BytePS also supports other native APIs, e.g., PyTorch Distributed Data Parallel and TensorFlow Mirrored Strategy. See DistributedDataParallel.md and MirroredStrategy.md for usage.

Limitations and Future Plans

BytePS does not support pure CPU training for now. One reason is that the cheap PS assumption of BytePS do not hold for CPU training. Consequently, you need CUDA and NCCL to build and run BytePS.

We would like to have below features, and there is no fundamental difficulty to implement them in BytePS architecture. However, they are not implemented yet:

  • Sparse model training
  • Fault-tolerance
  • Straggler-mitigation

Publications

  1. [OSDI'20] "A Unified Architecture for Accelerating Distributed DNN Training in Heterogeneous GPU/CPU Clusters". Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, Chuanxiong Guo.

  2. [SOSP'19] "A Generic Communication Scheduler for Distributed DNN Training Acceleration". Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan Wu, Chuanxiong Guo. (Code is at bytescheduler branch)

More Repositories

1

IconPark

🍎Transform an SVG icon into multiple themes, and generate React icons,Vue icons,svg icons
TypeScript
8,298
star
2

xgplayer

A HTML5 video player with a parser that saves traffic
JavaScript
8,260
star
3

sonic

A blazingly fast JSON serializing & deserializing library
Assembly
6,870
star
4

monoio

Rust async runtime based on io-uring.
Rust
3,864
star
5

lightseq

LightSeq: A High Performance Library for Sequence Processing and Generation
C++
3,193
star
6

ByteX

ByteX is a bytecode plugin platform based on Android Gradle Transform API and ASM. 字节码插件开发平台
Java
2,865
star
7

Elkeid

Elkeid is an open source solution that can meet the security requirements of various workloads such as hosts, containers and K8s, and serverless. It is derived from ByteDance's internal best practices.
Go
2,226
star
8

AlphaPlayer

AlphaPlayer is a video animation engine.
Java
2,181
star
9

scene

Android Single Activity Framework compatible with Fragment.
Java
2,097
star
10

bhook

🔥 ByteHook is an Android PLT hook library which supports armeabi-v7a, arm64-v8a, x86 and x86_64.
C
2,073
star
11

flutter_ume

UME is an in-app debug kits platform for Flutter. Produced by Flutter Infra team of ByteDance
Dart
2,053
star
12

terarkdb

A RocksDB compatible KV storage engine with better performance
C++
2,044
star
13

btrace

🔥🔥 btrace(AKA RheaTrace) is a high performance Android trace tool which is based on Perfetto, it support to define custom events automatically during building apk and using bhook to provider more native events like Render/Binder/IO etc.
Kotlin
1,913
star
14

gopkg

Universal Utilities for Go
Go
1,704
star
15

android-inline-hook

🔥 ShadowHook is an Android inline hook library which supports thumb, arm32 and arm64.
C
1,660
star
16

bitsail

BitSail is a distributed high-performance data integration engine which supports batch, streaming and incremental scenarios. BitSail is widely used to synchronize hundreds of trillions of data every day.
Java
1,627
star
17

go-tagexpr

An interesting go struct tag expression syntax for field validation, etc.
Go
1,470
star
18

GiantMIDI-Piano

Python
1,431
star
19

appshark

Appshark is a static taint analysis platform to scan vulnerabilities in an Android app.
Kotlin
1,363
star
20

AabResGuard

The tool of obfuscated aab resources.(Android app bundle资源混淆工具)
Java
1,307
star
21

piano_transcription

Python
1,247
star
22

CodeLocator

Kotlin
1,163
star
23

BoostMultiDex

BoostMultiDex is a solution for quickly loading multiple dex files on low Android version devices (4.X and below, SDK <21).
Java
1,106
star
24

music_source_separation

Python
1,039
star
25

Fastbot_Android

Fastbot(2.0) is a model-based testing tool for modeling GUI transitions to discover app stability problems
C++
1,031
star
26

SALMONN

SALMONN: Speech Audio Language Music Open Neural Network
Python
1,000
star
27

memory-leak-detector

C
919
star
28

fedlearner

A multi-party collaborative machine learning framework
Python
892
star
29

monolith

ByteDance's Recommendation System
Python
844
star
30

sonic-cpp

A fast JSON serializing & deserializing library, accelerated by SIMD.
C++
811
star
31

godlp

sensitive information protection toolkit
Go
770
star
32

MVDream

Multi-view Diffusion for 3D Generation
Python
744
star
33

res-adapter

Official implementation of "ResAdapter: Domain Consistent Resolution Adapter for Diffusion Models".
Python
724
star
34

bytemd

ByteMD v1 repository
TypeScript
679
star
35

tailor

C
669
star
36

ibot

iBOT 🤖: Image BERT Pre-Training with Online Tokenizer (ICLR 2022)
Jupyter Notebook
663
star
37

RealRichText

A Tricky Solution for Implementing Inline-Image-In-Text Feature in Flutter.
Dart
658
star
38

guide

A new feature guide component by react 🧭
TypeScript
651
star
39

mockey

a simple and easy-to-use golang mock library
Go
622
star
40

magic-microservices

Make Web Components easier and powerful!😘
TypeScript
570
star
41

Fastbot_iOS

About Fastbot(2.0) is a model-based testing tool for modeling GUI transitions to discover app stability problems
Objective-C
553
star
42

flow-builder

A highly customizable streaming flow builder.
TypeScript
526
star
43

MVDream-threestudio

3D generation code for MVDream
Python
473
star
44

effective_transformer

Running BERT without Padding
C++
457
star
45

ByteTransformer

optimized BERT transformer inference on NVIDIA GPU. https://arxiv.org/abs/2210.03052
C++
449
star
46

Next-ViT

Python
426
star
47

matxscript

A high-performance, extensible Python AOT compiler.
C++
408
star
48

byteir

A model compilation solution for various hardware
MLIR
362
star
49

syllepsis

Syllepsis is an out-of-the-box rich text editor.
TypeScript
355
star
50

uss

This is the PyTorch implementation of the Universal Source Separation with Weakly labelled Data.
Python
324
star
51

OMGD

Online Multi-Granularity Distillation for GAN Compression (ICCV2021)
Python
323
star
52

neurst

Neural end-to-end Speech Translation Toolkit
Python
298
star
53

danmu.js

HTML5 danmu (danmaku) plugin for any DOM element
JavaScript
292
star
54

vArmor

vArmor is a cloud native container sandbox system based on AppArmor/BPF/Seccomp. It also includes multiple built-in protection rules that are ready to use out of the box.
Go
263
star
55

particle-sfm

ParticleSfM: Exploiting Dense Point Trajectories for Localizing Moving Cameras in the Wild. ECCV 2022.
C++
263
star
56

CloudShuffleService

Cloud Shuffle Service(CSS) is a general purpose remote shuffle solution for compute engines, including Spark/Flink/MapReduce.
Java
245
star
57

lynx-llm

paper: https://arxiv.org/abs/2307.02469 page: https://lynx-llm.github.io/
Python
227
star
58

g3

Enterprise-oriented Generic Proxy Solutions
Rust
227
star
59

xgplayer-vue

Vue component for xgplayer, a HTML5 video player with a parser that saves traffic
JavaScript
219
star
60

DEADiff

[CVPR 2024] Official implementation of "DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations"
Python
209
star
61

flux

A fast communication-overlapping library for tensor parallelism on GPUs.
C++
201
star
62

trace-irqoff

Interrupts-off or softirqs-off latency tracer
C
195
star
63

ParaGen

ParaGen is a PyTorch deep learning framework for parallel sequence generation.
Python
186
star
64

ByteMLPerf

AI Accelerator Benchmark focuses on evaluating AI Accelerators from a practical production perspective, including the ease of use and versatility of software and hardware.
Python
181
star
65

MoMA

MoMA: Multimodal LLM Adapter for Fast Personalized Image Generation
Jupyter Notebook
177
star
66

AWERTL

An non-invasive iOS framework for quickly adapting Right-To-Left style UI
Objective-C
175
star
67

Bytedance-UnionAD

Ruby
170
star
68

keyhouse

Keyhouse is a skeleton of general-purpose Key Management System written in Rust.
Rust
163
star
69

react-model

The next generation state management library for React
TypeScript
162
star
70

LargeBatchCTR

Large batch training of CTR models based on DeepCTR with CowClip.
Python
162
star
71

ic_flow_platform

IFP (ic flow platform) is an integrated circuit design flow platform, mainly used for IC process specification management and data flow contral.
Python
154
star
72

DanmakuRenderEngine

DanmakuRenderEngine is a lightweight and scalable Android danmaku library. 轻量级高扩展安卓弹幕渲染引擎
Kotlin
149
star
73

primus

Java
148
star
74

diat

A CLI tool to help with diagnosing Node.js processes basing on inspector.
JavaScript
146
star
75

coconut_cvpr2024

Jupyter Notebook
143
star
76

Hammer

An efficient toolkit for training deep models.
Python
138
star
77

ns-x

An easy-to-use, flexible network simulator library in Go.
Go
116
star
78

pv3d

Python
113
star
79

fc-clip

This repo contains the code for our paper Convolutions Die Hard: Open-Vocabulary Segmentation with Single Frozen Convolutional CLIP
Python
109
star
80

RLFN

Winner of runtime track in NTIRE 2022 challenge on Efficient Super-Resolution
Python
106
star
81

DCFrame

DCFrame is a Swift UI collection framework, which can easily create complex UI.
Swift
100
star
82

trace-noschedule

Trace noschedule thread
C
99
star
83

decoupleQ

A quantization algorithm for LLM
Cuda
99
star
84

tar-wasm

A faster experimental wasm-based tar implementation for browsers.
Rust
95
star
85

TWIST

Official codes: Self-Supervised Learning by Estimating Twin Class Distribution
Python
95
star
86

magic-portal

⚡ A blazing fast micro-component and micro-frontend solution uses web-components under the hood.
TypeScript
91
star
87

xgplayer-react

React component for xgplayer, a HTML5 video player with a parser that saves traffic
JavaScript
84
star
88

fe-foundation

UI Foundation for React Hooks and Vue Composition Api
TypeScript
80
star
89

nnproxy

Scalable NameNode RPC Proxy for HDFS Federation
Java
79
star
90

dbatman

Go
74
star
91

Elkeid-HUB

Elkeid HUB is a rule/event processing engine maintained by the Elkeid Team that supports streaming/offline (not yet supported by the community edition) data processing. The original intention is to solve complex data/event processing and external system linkage requirements through standardized rules.
Python
74
star
92

FreeSeg

Python
69
star
93

pull_to_refresh

Flutter pull_to_refresh widget
Dart
67
star
94

Jeddak-DPSQL

DPSQL (Privacy Protection SQL Query Service) - This project is a microservice Middleware located between the database engine ( Hive , Clickhouse , etc.) and the application system. It provides transparent SQL query result desensitization capabilities.
Python
62
star
95

terark-zip

A data structure and algorithm library built for TerarkDB
C++
62
star
96

trace-runqlat

C
61
star
97

ipmb

An interprocess message bus system built in Rust.
Rust
60
star
98

X-Portrait

Source code for the SIGGRAPH 2024 paper "X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention"
Python
59
star
99

kernel

ByteDance kernel for use on cloud.
C
57
star
100

scroll_kit

Dart
56
star