• Stars
    star
    221
  • Rank 179,773 (Top 4 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Xarray backend to Copernicus Sentinel-1 satellite data products

xarray-sentinel

Easily access and explore the SAR data products of the Copernicus Sentinel-1 satellite mission in Python.

This Open Source project is sponsored by B-Open - https://www.bopen.eu.

Features

xarray-sentinel is a Python library and Xarray backend with the following functionalities:

  • supports the following data products as distributed by ESA:
    • Sentinel-1 Ground Range Detected (GRD):
      • Stripmap (SM)
      • Interferometric Wide Swath (IW)
      • Extra Wide Swath (EW)
    • Sentinel-1 Single Look Complex (SLC) SM/IW/EW
  • creates ready-to-use Xarray Datasets that map the data lazily and efficiently in terms of both memory usage and disk / network access
  • reads all SAR imagery data: GRD images, SLC swaths and SLC bursts
  • reads several metadata elements: satellite orbit and attitude, ground control points, radiometric calibration look up tables, Doppler centroid estimation and more
  • (partially broken, see #127) reads uncompressed and compressed SAFE data products on the local computer or on a network via fsspec
  • supports larger-than-memory and distributed data access via Dask and rioxarray / rasterio / GDAL
  • provides a few helpers for simple operations involving metadata like cropping individual bursts out of IW SLC swaths, applying radiometric calibration polynomials, converting slant to ground range for GRD products and computing geospatial metadata.

Overall, the software is in the beta phase and the usual caveats apply.

Install

The easiest way to install xarray-sentinel is in a conda environment. The following commands create a new environment, activate it, install the package and its dependencies:

    conda create -n XARRAY-SENTINEL
    conda activate XARRAY-SENTINEL
    conda install -c conda-forge dask "rasterio=>1.3.0" xarray-sentinel

Usage

The SAR data products of the Copernicus Sentinel-1 satellite mission are distributed in the SAFE format, composed of a few raster data files in TIFF and several metadata files in XML. The aim of xarray-sentinel is to provide a developer-friendly Python interface to all data and several metadata elements as Xarray Datasets to enable easy processing of SAR data into value-added products.

Due to the inherent complexity and redundancy of the SAFE format xarray-sentinel maps it to a tree of groups where every group may be opened as a Dataset, but it may also contain subgroups, that are listed in the subgroups attribute.

The following sections show some example of xarray-sentinel usage. In the notebooks folder you can also find notebooks, one for each supported product, that allow you to explore the data in more detail using the xarray-sentinel functions.

The root dataset

For example let's explore the Sentinel-1 SLC Stripmap product in the local folder ./S1A_S3_SLC__1SDV_20210401T152855_20210401T152914_037258_04638E_6001.SAFE. First, we can open the SAR data product by passing the engine="sentinel-1" option to xr.open_dataset and access the root group of the product, also known as /:

>>> import xarray as xr
>>> slc_sm_path = "tests/data/S1A_S3_SLC__1SDV_20210401T152855_20210401T152914_037258_04638E_6001.SAFE"
>>> xr.open_dataset(slc_sm_path, engine="sentinel-1")
<xarray.Dataset>
Dimensions:  ()
Data variables:
    *empty*
Attributes: ...
    family_name:                         SENTINEL-1
    number:                              A
    mode:                                SM
    swaths:                              ['S3']
    orbit_number:                        37258
    relative_orbit_number:               86
    ...
    start_time:                          2021-04-01T15:28:55.111501
    stop_time:                           2021-04-01T15:29:14.277650
    group:                               /
    subgroups:                           ['S3', 'S3/VH', 'S3/VH/orbit', 'S3/V...
    Conventions:                         CF-1.8
    history:                             created by xarray_sentinel-...

The root Dataset does not contain any data variable, but only attributes that provide general information on the product and a description of the tree structure of the data. The group attribute contains the name of the current group and the subgroups attribute shows the names of all available groups below this one.

Measurements datasets

To open the other groups we need to add the keyword group to xr.open_dataset. The measurement can then be read by selecting the desired beam mode and polarization. In this example, the data contains the S3 beam mode and the VH polarization with group="S3/VH" is selected:

>>> slc_s3_vh = xr.open_dataset(slc_sm_path, group="S3/VH", engine="sentinel-1", chunks=2048)
>>> slc_s3_vh
<xarray.Dataset>
Dimensions:           (slant_range_time: 18998, azimuth_time: 36895)
Coordinates:
    pixel             (slant_range_time) int64 ...
    line              (azimuth_time) int64 ...
  * azimuth_time      (azimuth_time) datetime64[ns] ...
  * slant_range_time  (slant_range_time) float64 ...
Data variables:
    measurement       (azimuth_time, slant_range_time) complex64 ...
Attributes: ...
    family_name:                         SENTINEL-1
    number:                              A
    mode:                                SM
    swaths:                              ['S3']
    orbit_number:                        37258
    relative_orbit_number:               86
    ...
    geospatial_lon_min:                  42.772483374347
    geospatial_lon_max:                  43.75770573943618
    group:                               /S3/VH
    subgroups:                           ['orbit', 'attitude', 'azimuth_fm_ra...
    Conventions:                         CF-1.8
    history:                             created by xarray_sentinel-...

The measurement variable contains the Single Look Complex measurements as a complex64 and has dimensions slant_range_time and azimuth_time. The azimuth_time is an np.datetime64 coordinate that contains the UTC zero-Doppler time associated with the image line and slant_range_time is an np.float64 coordinate that contains the two-way range time interval in seconds associated with the image pixel.

Since Sentinel-1 IPF version 3.40, a unique identifier for bursts has been added to the SLC product metadata. For these products, the list of the burst ids is stored the burst_ids dataset attribute.

Metadata datasets

The measurement group contains several subgroups with metadata associated with the image. Currently, xarray-sentinel supports the following metadata datasets:

  • product XML file
    • orbit from the <orbit> tags
    • attitude from the <attitude> tags
    • azimuth_fm_rate from the <azimuthFmRate> tags
    • dc_estimate from the <dcEstimate> tags
    • gcp from the <geolocationGridPoint> tags
    • coordinate_conversion from the <coordinateConversion> tags
  • calibration XML file
    • calibration from the <calibrationVector> tags
  • noise XML file
    • noise_range from the <noiseRangeVector> tags
    • noise_azimuth from the <noiseAzimuthVector> tags

For example, the image calibration metadata associated with the S3/VH image can be read using group="S3/VH/calibration":

>>> slc_s3_vh_calibration = xr.open_dataset(slc_sm_path, group="S3/VH/calibration", engine="sentinel-1")
>>> slc_s3_vh_calibration
<xarray.Dataset>
Dimensions:       (line: 22, pixel: 476)
Coordinates:
  * line          (line) int64 0 1925 3850 5775 7700 ... 34649 36574 38499 40424
  * pixel         (pixel) int64 0 40 80 120 160 ... 18880 18920 18960 18997
Data variables:
    azimuth_time  (line) datetime64[ns] ...
    sigmaNought   (line, pixel) float32 ...
    betaNought    (line, pixel) float32 ...
    gamma         (line, pixel) float32 ...
    dn            (line, pixel) float32 ...
Attributes: ...
    family_name:                         SENTINEL-1
    number:                              A
    mode:                                SM
    swaths:                              ['S3']
    orbit_number:                        37258
    relative_orbit_number:               86
    ...
    stop_time:                           2021-04-01T15:29:14.277650
    group:                               /S3/VH/calibration
    Conventions:                         CF-1.8
    title:                               Calibration coefficients
    comment:                             The dataset contains calibration inf...
    history:                             created by xarray_sentinel-...

Note that in this case, the dimensions are line and pixel with coordinates corresponding to the sub-grid of the original image where the calibration Look Up Table is defined.

The groups present in a typical Sentinel-1 Stripmap product are:

/
└─ S3
   ├─ VH
   │  ├─ orbit
   │  ├─ attitude
   │  ├─ azimuth_fm_rate
   │  ├─ dc_estimate
   │  ├─ gcp
   │  ├─ coordinate_conversion
   │  ├─ calibration
   │  ├─ noise_range
   │  └─ noise_azimuth
   └─ VV
      ├─ orbit
      ├─ attitude
      ├─ azimuth_fm_rate
      ├─ dc_estimate
      ├─ gcp
      ├─ coordinate_conversion
      ├─ calibration
      ├─ noise_range
      └─ noise_azimuth

Advanced usage

TOPS burst datasets

The IW and EW products, that use the Terrain Observation with Progressive Scan (TOPS) acquisition mode, are more complex because they contain several beam modes in the same SAFE package, but also because the measurement array is a collage of sub-images called bursts.

xarray-sentinel provides a helper function that crops a burst out of a measurement dataset for you.

You need to first open the desired measurement dataset, for example, the HH polarisation of the first IW swath of the S1A_IW_SLC__1SDH_20220414T102209_20220414T102236_042768_051AA4_E677.SAFE product, in the current folder:

>>> slc_iw_v340_path = "tests/data/S1A_IW_SLC__1SDH_20220414T102209_20220414T102236_042768_051AA4_E677.SAFE"
>>> slc_iw1_v340_hh = xr.open_dataset(slc_iw_v340_path, group="IW1/HH", engine="sentinel-1")
>>> slc_iw1_v340_hh
<xarray.Dataset>
Dimensions:           (pixel: 21169, line: 13500)
Coordinates:
  * pixel             (pixel) int64 0 1 2 3 4 ... 21164 21165 21166 21167 21168
  * line              (line) int64 0 1 2 3 4 5 ... 13495 13496 13497 13498 13499
    azimuth_time      (line) datetime64[ns] ...
    slant_range_time  (pixel) float64 ...
Data variables:
    measurement       (line, pixel) complex64 ...
Attributes: ...
    family_name:                         SENTINEL-1
    number:                              A
    mode:                                IW
    swaths:                              ['IW1', 'IW2', 'IW3']
    orbit_number:                        42768
    relative_orbit_number:               171
    ...
    geospatial_lon_min:                  -61.94949110259839
    geospatial_lon_max:                  -60.24826879672774
    group:                               /IW1/HH
    subgroups:                           ['orbit', 'attitude', 'azimuth_fm_ra...
    Conventions:                         CF-1.8
    history:                             created by xarray_sentinel-...

Note that the measurement data for IW and EW acquisition modes can not be indexed by physical coordinates because of the collage nature of the image.

Now the 9th burst out of 9 can be cropped from the swath data using burst_index=8, via:

>>> import xarray_sentinel
>>> xarray_sentinel.crop_burst_dataset(slc_iw1_v340_hh, burst_index=8)
<xarray.Dataset>
Dimensions:           (slant_range_time: 21169, azimuth_time: 1500)
Coordinates:
    pixel             (slant_range_time) int64 0 1 2 3 ... 21166 21167 21168
    line              (azimuth_time) int64 12000 12001 12002 ... 13498 13499
  * azimuth_time      (azimuth_time) datetime64[ns] 2022-04-14T10:22:33.80763...
  * slant_range_time  (slant_range_time) float64 0.005348 0.005349 ... 0.005677
Data variables:
    measurement       (azimuth_time, slant_range_time) complex64 ...
Attributes: ...
    family_name:                         SENTINEL-1
    number:                              A
    mode:                                IW
    swaths:                              ['IW1', 'IW2', 'IW3']
    orbit_number:                        42768
    relative_orbit_number:               171
    ...
    group:                               /IW1/HH
    Conventions:                         CF-1.8
    history:                             created by xarray_sentinel-...
    azimuth_anx_time:                    2136.774327
    burst_index:                         8
    burst_id:                            365923

If IPF processor version is 3.40 or higher, it is also possible to select the burst to be cropped using the burst_id key:

>>> xarray_sentinel.crop_burst_dataset(slc_iw1_v340_hh, burst_id=365923)
<xarray.Dataset>
Dimensions:           (slant_range_time: 21169, azimuth_time: 1500)
Coordinates:
    pixel             (slant_range_time) int64 0 1 2 3 ... 21166 21167 21168
    line              (azimuth_time) int64 12000 12001 12002 ... 13498 13499
  * azimuth_time      (azimuth_time) datetime64[ns] 2022-04-14T10:22:33.80763...
  * slant_range_time  (slant_range_time) float64 0.005348 0.005349 ... 0.005677
Data variables:
    measurement       (azimuth_time, slant_range_time) complex64 ...
Attributes: ...
    family_name:                         SENTINEL-1
    number:                              A
    mode:                                IW
    swaths:                              ['IW1', 'IW2', 'IW3']
    orbit_number:                        42768
    relative_orbit_number:               171
    ...
    group:                               /IW1/HH
    Conventions:                         CF-1.8
    history:                             created by xarray_sentinel-...
    azimuth_anx_time:                    2136.774327
    burst_index:                         8
    burst_id:                            365923

Note that the helper function also performs additional changes, such as swapping the dimensions to the physical coordinates and adding burst attributes.

As a quick way to access burst data, you can add the burst_index to the group specification on open, for example, group="IW1/VH/8". The burst groups are not listed in the subgroup attribute because they are not structural.

>>> slc_iw_v330_path = "tests/data/S1B_IW_SLC__1SDV_20210401T052622_20210401T052650_026269_032297_EFA4.SAFE"
>>> xr.open_dataset(slc_iw_v330_path, group="IW1/VH/8", engine="sentinel-1")
<xarray.Dataset>
Dimensions:           (slant_range_time: 21632, azimuth_time: 1501)
Coordinates:
    pixel             (slant_range_time) int64 ...
    line              (azimuth_time) int64 ...
  * azimuth_time      (azimuth_time) datetime64[ns] 2021-04-01T05:26:46.27227...
  * slant_range_time  (slant_range_time) float64 0.005343 0.005343 ... 0.005679
Data variables:
    measurement       (azimuth_time, slant_range_time) complex64 ...
Attributes: ...
    family_name:                         SENTINEL-1
    number:                              B
    mode:                                IW
    swaths:                              ['IW1', 'IW2', 'IW3']
    orbit_number:                        26269
    relative_orbit_number:               168
    ...
    geospatial_lon_max:                  12.093126130070317
    group:                               /IW1/VH
    azimuth_anx_time:                    2210.634453
    burst_index:                         8
    Conventions:                         CF-1.8
    history:                             created by xarray_sentinel-...

Calibration

xarray-sentinel provides helper functions to calibrate the data using the calibration metadata. You can compute the gamma intensity for part of the Stripmap image above with:

>>> xarray_sentinel.calibrate_intensity(slc_s3_vh.measurement[:2048, :2048], slc_s3_vh_calibration.gamma)
<xarray.DataArray (azimuth_time: 2048, slant_range_time: 2048)>
dask.array<pow, shape=(2048, 2048), dtype=float32, chunksize=(2048, 2048), chunktype=numpy.ndarray>
Coordinates:
    pixel             (slant_range_time) int64 dask.array<chunksize=(2048,), meta=np.ndarray>
    line              (azimuth_time) int64 dask.array<chunksize=(2048,), meta=np.ndarray>
  * azimuth_time      (azimuth_time) datetime64[ns] 2021-04-01T15:28:55.11150...
  * slant_range_time  (slant_range_time) float64 0.005273 0.005273 ... 0.005303
Attributes: ...
    family_name:                         SENTINEL-1
    number:                              A
    mode:                                SM
    swaths:                              ['S3']
    orbit_number:                        37258
    relative_orbit_number:               86
    ...
    geospatial_lat_min:                  -12.17883496921861
    geospatial_lat_max:                  -10.85986742252814
    geospatial_lon_min:                  42.772483374347
    geospatial_lon_max:                  43.75770573943618
    units:                               m2 m-2
    long_name:                           gamma

Advanced data access via fsspec

You need the unreleased rasterio >= 1.3.0 for fsspec to work on measurement data

xarray-sentinel can read data from a variety of data stores including local file systems, network file systems, cloud object stores and compressed file formats, like Zip. This is done by passing fsspec compatible URLs to xr.open_dataset and optionally the storage_options keyword argument.

For example you can open a product directly from a zip file with:

>>> slc_iw_zip_path = "tests/data/S1B_IW_SLC__1SDV_20210401T052622_20210401T052650_026269_032297_EFA4.zip"
>>> xr.open_dataset(f"zip://*/manifest.safe::{slc_iw_zip_path}", group="IW1/VH", engine="sentinel-1")  # doctest: +SKIP
<xarray.Dataset>
Dimensions:           (pixel: 21632, line: 13509)
Coordinates:
  * pixel             (pixel) int64 0 1 2 3 4 ... 21627 21628 21629 21630 21631
  * line              (line) int64 0 1 2 3 4 5 ... 13504 13505 13506 13507 13508
    azimuth_time      (line) datetime64[ns] ...
    slant_range_time  (pixel) float64 ...
Data variables:
    measurement       (line, pixel) complex64 ...
Attributes: ...
    family_name:                         SENTINEL-1
    number:                              B
    mode:                                IW
    swaths:                              ['IW1', 'IW2', 'IW3']
    orbit_number:                        26269
    relative_orbit_number:               168
    ...
    number_of_bursts:                    9
    lines_per_burst:                     1501
    group:                               /IW1/VH
    subgroups:                           ['orbit', 'attitude', 'azimuth_fm_ra...
    Conventions:                         CF-1.8
    history:                             created by xarray_sentinel-...

As an example of remote access, you can open a product directly from a GitHub repo with:

>>> xr.open_dataset(f"github://bopen:xarray-sentinel@/{slc_iw_path}", group="IW1/VH", engine="sentinel-1")  # doctest: +SKIP
<xarray.Dataset>
Dimensions:           (pixel: 21632, line: 13509)
Coordinates:
  * pixel             (pixel) int64 0 1 2 3 4 ... 21627 21628 21629 21630 21631
  * line              (line) int64 0 1 2 3 4 5 ... 13504 13505 13506 13507 13508
    azimuth_time      (line) datetime64[ns] ...
    slant_range_time  (pixel) float64 ...
Data variables:
    measurement       (line, pixel) complex64 ...
Attributes: ...
    family_name:                         SENTINEL-1
    number:                              B
    mode:                                IW
    swaths:                              ['IW1', 'IW2', 'IW3']
    orbit_number:                        26269
    relative_orbit_number:               168
    ...
    number_of_bursts:                    9
    lines_per_burst:                     1501
    group:                               /IW1/VH
    subgroups:                           ['orbit', 'attitude', 'azimuth_fm_ra...
    Conventions:                         CF-1.8
    history:                             created by xarray_sentinel-...

fsspec is very powerful and supports caching and chaining, for example you can open a zip file off a GitHub repo and cache the file locally with:

>>> xr.open_dataset(
...     f"zip://*/manifest.safe::simplecache::github://bopen:xarray-sentinel@/{slc_iw_zip_path}",
...     engine="sentinel-1",
...     group="IW1/VH",
...     storage_options={
...         "simplecache": {"cache_storage": "/tmp/zipfiles/"},
...     },
... )  # doctest: +SKIP
<xarray.Dataset>
Dimensions:           (pixel: 21632, line: 13509)
Coordinates:
  * pixel             (pixel) int64 0 1 2 3 4 ... 21627 21628 21629 21630 21631
  * line              (line) int64 0 1 2 3 4 5 ... 13504 13505 13506 13507 13508
    azimuth_time      (line) datetime64[ns] ...
    slant_range_time  (pixel) float64 ...
Data variables:
    measurement       (line, pixel) complex64 ...
Attributes: ...
    family_name:                         SENTINEL-1
    number:                              B
    mode:                                IW
    swaths:                              ['IW1', 'IW2', 'IW3']
    orbit_number:                        26269
    relative_orbit_number:               168
    ...
    number_of_bursts:                    9
    lines_per_burst:                     1501
    group:                               /IW1/VH
    subgroups:                           ['orbit', 'attitude', 'azimuth_fm_ra...
    Conventions:                         CF-1.8
    history:                             created by xarray_sentinel-...

Reference documentation

This is the list of the reference documents:

Design decisions

  • The main design choice for xarray-sentinel is for it to be as much as viable a pure map of the content of the SAFE data package, with as little interpretation as possible.
    • The tree-like structure follows the structure of the SAFE package even when information, like orbit and attitude, is expected to be identical for different beam modes. We observed at least a case where the number of orbital state vectors reported was different between beam modes.
    • Data and metadata are converted to the closest available data-type in Python / numpy. The most significant conversion is from CInt16 to np.complex64 for the SLC measurements that double the space requirements for the data. Also, xarray-sentinel converts UTC times to np.datetime64 and makes no attempt to support leap seconds, acquisitions containing leap seconds may crash or silently return corrupted data. See the rationale for choices of the coordinates data-types below.
    • We try to keep all naming as close as possible to the original names. In particular, for metadata we use the names of the XML tags, only converting them from camelCase to snake_case.
  • Whenever possible xarray-sentinel indexes the data with physical coordinates azimuth_time and slant_range_time, but keeps image line and pixel as auxiliary coordinates.
  • As an exception to the metadata naming rule above we add some attributes to get CF-Conventions compliance.
  • We aim at opening available data and metadata even for partial SAFE packages, for example, xarray-sentinel can open a measurement dataset for a beam mode even when the TIFF files of other beam modes / polarizations are missing.
  • Accuracy considerations and rationale for coordinates data-types:
    • azimuth_time can be expressed as np.datetime64[ns] since spatial resolution at LEO speed is 10km/s * 1ns ~= 0.001cm.
    • slant_range_time on the other hand cannot be expressed as np.timedelta64[ns] as spatial resolution at the speed of light is 300_000km/s * 1ns / 2 ~= 15cm, i.e. not enough for interferometric applications. slant_range_time needs a spatial resolution of 0.001cm at a 1_000km distance, i.e. around 1e-9, well within the 1e-15 resolution of IEEE-754 float64.

Project badges

on-push codecov

Contributing

The main repository is hosted on GitHub. Testing, bug reports and contributions are highly welcomed and appreciated:

https://github.com/bopen/xarray-sentinel

Lead developers:

Main contributors:

See also the list of contributors who participated in this project.

Sponsoring

B-Open commits to maintain the project long term and we are happy to accept sponsorships to develop new features.

We wish to express our gratitude to the project sponsors:

  • Microsoft has sponsored the support for GRD products and fsspec data access.

License

Copyright 2021-2022, B-Open Solutions srl and the xarray-sentinel authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

More Repositories

1

elevation

Python script to download global terrain digital elevation models, SRTM 30m DEM and SRTM 90m DEM.
Python
287
star
2

sarsen

Algorithms and utilities for Synthetic Aperture Radar (SAR) sensors
Jupyter Notebook
268
star
3

leaflet-area-selection

Create and manipulate a polygonal area on a Leaflet map
JavaScript
34
star
4

mariobros

Simple configuration for Spotify Luigi.
Python
15
star
5

docker-ubuntu-pyenv

Ubuntu with modern python versions: 3.7, 3.6, 3.5, pypy3, 2.7, pypy2.
Dockerfile
13
star
6

xarray-ecmwf

Xarray backend to map an ECMWF style request to a service onto an XArray Dataset
Python
10
star
7

react-jsonschema-form-async

An alternative Form for Mozilla's JSON Schema Form library with async validation
JavaScript
7
star
8

bgeo.catasto

Italian land registry utilities
Python
5
star
9

ckanext-mapsearch

A CKAN extension to add an scale-aware map-centred search
JavaScript
5
star
10

qgis-elevation-plugin

QGIS plugin to download global terrain digital elevation models, SRTM 30m DEM and SRTM 90m DEM.
Python
5
star
11

c3s-eqc-toolbox-template

CADS Toolbox template application
Jupyter Notebook
5
star
12

earthdatahub-catalogue

3
star
13

earthdatahub-notebooks

Earth Data Hub use cases, tutorial, etc
HTML
3
star
14

react-jsonschema-form-field-geolocation

Geolocation field for react-jsonschema-form
JavaScript
2
star
15

c3s-eqc-automatic-quality-control

C3S EQC Automatic Quality Control
Python
2
star
16

xarray-gdal

Experimental GDAL plugin for Xarray (not intended for public release)
Python
2
star
17

docker-ubuntugis-pyenv

UbuntuGIS + pyenv docker image.
Makefile
2
star
18

sarsen-benchmarks

Python
1
star
19

c3s-eqc-data-checker

Data quality checker
Python
1
star
20

cdsapiserver

CDS API server
Python
1
star
21

docker-ubuntugis-java-pyenv

UbuntuGIS java and pyenv image.
Makefile
1
star
22

cf2cdm

Translate cf-compliant xarray datasets to a custom data model
Python
1
star