kg-2019-baseline
2019年百度的三元组抽取比赛( http://lic2019.ccf.org.cn/kg ),一个baseline
注:正式版已经更新至 https://github.com/bojone/kg-2019
模型
用BiLSTM做联合标注,先预测subject,然后根据suject同时预测object和predicate,标注结构是“半指针-半标注”结构,以前也曾介绍过( https://kexue.fm/archives/5409 )
标注结构是自己设计的,我看了很多关系抽取的论文,没有发现类似的做法。所以,如果你基于此模型做出后的修改,最终获奖了或者发表paper什么的,烦请注明一下(其实也不是太奢望)
@misc{
jianlin2019bdkg,
title={Hybrid Structure of Pointer and Tagging for Relation Extraction: A Baseline},
author={Jianlin Su},
year={2019},
publisher={GitHub},
howpublished={\url{https://github.com/bojone/kg-2019-baseline}},
}
用法
python trans.py
转换数据,python kg.py
直接跑。
结果
5个epoch内dev集的F1应该就能到达0.71+了,最后基本上F1都能跑到0.72~0.73,自动保存F1最优的模型,有同学跑到过0.74甚至0.75的,我也表示很无辜,大家拼人品吧。反正都会比官方的baseline要高。
环境
Python 2.7 + Keras 2.2.4 + Tensorflow 1.8,其中关系最大的应该是Python 2.7了,如果你用Python 3,需要修改几行代码,至于修改哪几行,自己想办法,我不是你的debugger。
欢迎入坑Keras。人生苦短,我用Keras~
声明
欢迎测试、修改使用,但这是我比较早的模型,文件里边有些做法在我最新版已经被抛弃,所以以后如果发现有什么不合理的地方,不要怪我故意将大家引入歧途就行了。
欢迎跟我交流讨论,但请尽量交流一些有意义的问题,而不是debug。(如果Keras不熟悉,请先自学一个星期Keras。)
特别强调:baseline的初衷是供参赛选手测试使用,如果你已经错过了参赛日期,但想要训练数据,请自行想办法向主办方索取。我不负责提供数据下载服务。