• Stars
    star
    130
  • Rank 277,575 (Top 6 %)
  • Language
    Jupyter Notebook
  • Created over 4 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Python Tutorials for Data Science

Data Science Basics, Tutorials and Functions

Python Basics

Introduction to Python

  - Data Types
  - Built-in Functions
  - Type Converting
  - Getting Input from users

Data Structures

  - Lists
  - Tuples
  - Dictionaries
  - Sets

Conditional Statements

  - Boolean Expressions
  - Logical Operators
  - If-Else
  - Grade System User Interaction Example
  - Nested If
  - Odd or Even Example

Loops

  - range()
  - In Operator
  - For Loop
  - Iterating in Strings
  - Iterating in two(2) dimensional Lists
  - continue
  - break
  - zip()
  - Iteration in a Dictionary
  - Iterating pair values
  - While Loop
  - While True

Functions

  - Intro to Functions
  - return()
  - Number of Arguments
  - Arbitrary Arguments, *args
  - Arbitrary Keyword Arguments, **kwargs
  - Giving output with Information
  - Functions that have 2 parameters
  - Predefined Parameters in Functions
  - Local and Global Variables
  - Changing global variables in local area
  - Pass Statement

Nested Functions

Object Oriented Programming

  - What is object oriented programming?
  - Defining Classes
  - Instantiation - Creating objects
  - Class and Instance Attributes
  - Instance(Object) Methods
  - Inheritance
  - Overriding - Extending the Functionality of a Parent Class
  - super() keyword

Numpy

  - What is Numpy?
  - Importing Numpy
  - Numpy arrays and Dimensions
  - Creating Numpy Arrays
      - Zero arrays
      - Ones arrays
      - Full arrays
      - Identify Matrixes
      - Linear Series
      - Distributions arrays - Random
  - Array Indexing
  - Subsets
  - reshape() function
  - Flattening the Arrays
  - Concatenation
  - Splitting
  - Sorting
  - Broadcasting
  - Array Math
  - Dot(Scalar) Product

Pandas

   - What is Pandas?
   - Importing Pandas Library
   - Pandas Series
   - Pandas Dataframes
   - Filtering
   - Adding/Removing rows and columns
   - Merging Dataframes
   - Sorting
   - Aggregation Functions
   - Grouping
   - Apply
   - Pivot Tables
   - Missing values(NaN)
   - Working external files in Pandas(csv,excel)
   - Exploring Netflix Dataset(basic)

Data Preprocessing-Cleaning

  - Data Cleaning / Cleasing
        - Noisy Data
        - Missing Data Analysis
        - Outlier Detection
  - Data Standardization / Feature Scaling
        - Normalization(0-1 Scaling)
        - Standardization(Z Score Scaling)
        - Min-Max Scaling
        - Binary Transformation
  - Variable Transformation
        - Label Encoding
        - One Hot Encoding

Data Visualization

   - Main Libraries for Data Visualisation
   - What is Exploratory data analysis(EDA)?
   - Importing Libraries
   - Matplotlib
       - Pyplot
       - Line Plot
       - Bar Plot
       - Pie Chart
       - Stack Plot
       - Histograms
       - Scatter Plot
       - Time Series Plotting
       - Box Plot 
       - Heatmap
   
   - Seaborn
       - Pyplot
       - Line Plot
       - Bar Plot
       - Cat Plot
       - Histograms
       - Density Plots
       - Pair Plot
       - Scatter Plot
       - Time Series Plotting
       - Box Plot
       - Heatmap
       - Multi-plot Grids
      
   - Pandas
       - Basic Plots
       - Bar Plots
       - Histograms
       - Box Plots
       - Area Plots
       - Scatter Plots
       - Hexagonal Bin Plots
       - Pie Plots
       - Plotting Tools
   
   - Plotnine - ggplot
       - Line Plot
       - Bar Plot
       - Scatter Plot
       - Histograms
       - Density Plot
       - Box Plot
       - Violin Plot
   
   - Plotly
       - Line Plot
       - Bar Plot
       - Pie Charts
       - Bubble Charts
       - Scatter Plots
       - Filled area Plots
       - Gannt Charts
       - Sunburst Charts
       - Tables

Linear Methods for Regression

  - What is Linear Regression?
  - Simple Linear Regression (Theory - Model- Tuning)
  - Multiple Linear Regression (Theory - Model- Tuning)
  - Least-Squares Regression(Ordinary Least Squares) (Theory - Model- Tuning)
  - Principal Component Analysis (PCA) 
  - Principal component regression(PCR) (Theory - Model- Tuning)
  - Shrinkage(Regularization) Methods
      - Partial Least Squares (Theory - Model- Tuning)
      - Ridge Regression(L2 Regularization) (Theory - Model- Tuning)
      - Lasso Regression(L1 Regularization) (Theory - Model- Tuning)
      - Elastic Net Regression (Theory - Model- Tuning)

Non-Linear Models for Regression

  - K - Nearest Neighbors(KNN) (Theory - Model- Tuning)
  - Support Vector Regression(SVR) (Theory - Model- Tuning)
  - Non-Linear Support Vector Regression(SVR) (Theory - Model- Tuning)
  - Regression(Decision) Trees (CART) (Theory - Model- Tuning)
  - Ensemble Learning - Bagged Trees(Bagging) (Theory - Model- Tuning)
  - Ensemble Learning - Random Forests (Theory - Model- Tuning)
  - Gradient Boosting Machines(GBM)  (Theory - Model- Tuning)
  - Light Gradient Boosting Machines(LGBM)  (Theory - Model- Tuning)
  - XGBoost(Extreme Gradient Boosting)  (Theory - Model- Tuning)
  - Catboost  (Theory - Model- Tuning)

Unsupervised Learning - Clustering - Principal Components Analysis(PCA)

  - Clustering
  - K-Means Clustering (Theory - Exploratory Data Analysis - Preprocessing - Model- Tuning)
  - Color - Image Quantization
  - Hierarchical Clustering (Theory - Model)
  - DBSCAN (Density-based spatial clustering) (Theory - Model- Tuning)
  - Principal Components Analysis(PCA) (Theory - Manual Implementation of PCA - Model)   

Classification

  - Classification and Evaluation Metrics
  - Logistic Regression (Theory - Model- Tuning)
  - K - Nearest Neighbors(KNN) (Theory - Model- Tuning)
  - Support Vector Machines(SVC) - Linear Kernel (Theory - Model- Tuning)
  - Support Vector Machines(SVC) - Radial Basis Kernel (Theory - Model- Tuning)
  - Decision Tree Classification (Theory - Model- Tuning)
  - Ensemble Learning - Random Forests Classification (Theory - Model- Tuning)
  - Naive Bayes Classification (Theory - Model)
  - GBM(Gradient Boosting Machines) Classification (Model- Tuning)
  - XGBoost(Extreme Gradient Boosting) Classification (Theory - Model- Tuning)
  - LGBM(Light Gradient Boosting Machines) Classification (Theory - Model- Tuning)

Deep Learning with Pytorch

  - What is Pytorch?
  - Importing Libraries
  - Basics of Pytorch
  - Tensors
  - Math Operations
  - Common Funtions
  - Variables - Autograd
  - Datasets & DataLoaders
  - Common Modules: Optim - nn
  - Extra - Useful Resources

Model Deployment

  - What is Joblib Library?
  - Artificial Neural Networks(ANN) Model
  - Prediction
  - Model Tuning & Validation
  - Saving Model as pickle file
  - Loading Model

Natural Language Proccessing

  - NLP Intuition
  - String Essentials : Creating String
  - String Essentials : Querying of Types
  - String Essentials : Reaching to Indexes
  - String Essentials : First and last characters
  - String Essentials : Splitting Characters
  - String Essentials : Case Conversions in String
  - String Essentials : Capitalizing and titles
  - String Essentials : Cropping Characters
  - String Essentials : Joining Strings
  - String Essentials : Replacing Characters
  - String Essentials : contains
  - Text Preprocessing : Converting string to other data types
  - Text Preprocessing : Case Conversion
  - Text Preprocessing : Handling with Punctuation
  - Text Preprocessing : Handling with Numbers
  - Text Preprocessing : Handling with Stopwords
  - Text Preprocessing : Handling with Frequnecies
  - Text Preprocessing : Tokenization
  - Text Preprocessing : Stemming
  - Text Preprocessing : Lemmatization
  - Object Standardization
  - Linguistic Features : N-Gram
  - Linguistic Features : Part of speech tagging (POS)
  - Linguistic Features : Chunking(Shallow Parsing)
  - Linguistic Features : Noun Chunks
  - Linguistic Features : Named Entity Recognition(NER)
  - Linguistic Features : Visualization in Spacy
  - Text Feature Engineering 
  - Bag of Words
  - Text Visualisation : Bar Plot
  - Text Visualisation : Frequency Visualisation
  - Text Visualisation : WordCloud
  - Transformers, Encoders and Decoders
  - Different Models : Bert, HuggingFace, StanfordNLP, NLTK, LSTM etc.
  - Sentiment Analysis with Logistic Regression
  - Sentiment Analysis with Naive Bayes
  - Vector Space Models
  - Neural Machine Translation
  - Text Summarization
  - Classification with Bert

Spark

  - Spark Basics
  - MlLib