• Stars
    star
    939
  • Rank 48,667 (Top 1.0 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 3 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] Hugging Face Spaces

This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets"

by Axel Sauer, Katja Schwarz, and Andreas Geiger.

If you find our code or paper useful, please cite

@InProceedings{Sauer2021ARXIV,
  author    = {Axel Sauer and Katja Schwarz and Andreas Geiger},
  title     = {StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets},
  journal   = {arXiv.org},
  volume    = {abs/2201.00273},
  year      = {2022},
  url       = {https://arxiv.org/abs/2201.00273},
}
Rank on Papers With Code  
PWC PWC
PWC PWC
PWC PWC
PWC PWC
PWC PWC

Related Projects

  • Projected GANs Converge Faster (NeurIPS'21)  -  Official Repo  -  Projected GAN Quickstart
  • StyleGAN-XL + CLIP (Implemented by CasualGANPapers)  -  StyleGAN-XL + CLIP
  • StyleGAN-XL + CLIP (Modified by Katherine Crowson to optimize in W+ space)  -  StyleGAN-XL + CLIP

Requirements

  • 64-bit Python 3.8 and PyTorch 1.9.0 (or later). See https://pytorch.org for PyTorch install instructions.
  • CUDA toolkit 11.1 or later.
  • GCC 7 or later compilers. The recommended GCC version depends on your CUDA version; see for example, CUDA 11.4 system requirements.
  • If you run into problems when setting up the custom CUDA kernels, we refer to the Troubleshooting docs of the original StyleGAN3 repo and the following issues: #23.
  • Windows user struggling installing the env might find #10 helpful.
  • Use the following commands with Miniconda3 to create and activate your PG Python environment:
    • conda env create -f environment.yml
    • conda activate sgxl

Data Preparation

For a quick start, you can download the few-shot datasets provided by the authors of FastGAN. You can download them here. To prepare the dataset at the respective resolution, run

python dataset_tool.py --source=./data/pokemon --dest=./data/pokemon256.zip \
  --resolution=256x256 --transform=center-crop

You need to follow our progressive growing scheme to get the best results. Therefore, you should prepare separate zips for each training resolution. You can get the datasets we used in our paper at their respective websites (FFHQ, ImageNet).

Training

For progressive growing, we train a stem on low resolution, e.g., 162 pixels. When the stem is finished, i.e., FID is saturating, you can start training the upper stages; we refer to these as superresolution stages.

Training the stem

Training StyleGAN-XL on Pokemon using 8 GPUs:

python train.py --outdir=./training-runs/pokemon --cfg=stylegan3-t --data=./data/pokemon16.zip \
    --gpus=8 --batch=64 --mirror=1 --snap 10 --batch-gpu 8 --kimg 10000 --syn_layers 10

--batch specifies the overall batch size, --batch-gpu specifies the batch size per GPU. The training loop will automatically accumulate gradients if you use fewer GPUs until the overall batch size is reached.

Samples and metrics are saved in outdir. If you don't want to track metrics, set --metrics=none. You can inspect fid50k_full.json or run tensorboard in training-runs/ to monitor the training progress.

For a class-conditional dataset (ImageNet, CIFAR-10), add the flag --cond True . The dataset needs to contain the class labels; see the StyleGAN2-ADA repo on how to prepare class-conditional datasets.

Training the super-resolution stages

Continuing with pretrained stem:

python train.py --outdir=./training-runs/pokemon --cfg=stylegan3-t --data=./data/pokemon32.zip \
  --gpus=8 --batch=64 --mirror=1 --snap 10 --batch-gpu 8 --kimg 10000 --syn_layers 10 \
  --superres --up_factor 2 --head_layers 7 \
  --path_stem training-runs/pokemon/00000-stylegan3-t-pokemon16-gpus8-batch64/best_model.pkl

--up_factor allows to train several stages at once, i.e., with --up_factor=4 and a 162 stem you can directly train at resolution 642.

If you have enough compute, a good tactic is to train several stages in parallel and then restart the superresolution stage training once in a while. The current stage will then reload its previous stem's best_model.pkl. Performance can sometimes drop at first because of domain shift, but the superresolution stage quickly recovers and improves further.

Training recommendations for datasets other than ImageNet

The default settings are tuned for ImageNet. For smaller datasets (<50k images) or well-curated datasets (FFHQ), you can significantly decrease the model size enabling much faster training. Recommended settings are: --cbase 16384 --cmax 256 --syn_layers 7 and for superresolution stages --head_layers 4.

Suppose you want to train as few stages as possible. We recommend training a 32x32 or 64x64 stem, then directly scaling to the final resolution (as described above, you must adjust --up_factor accordingly). However, generally, progressive growing yields better results faster as the throughput is much higher at lower resolutions. This can be seen in this figure by Karras et al., 2017:

Generating Samples & Interpolations

To generate samples and interpolation videos, run

python gen_images.py --outdir=out --trunc=0.7 --seeds=10-15 --batch-sz 1 \
  --network=https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/pokemon256.pkl

and

python gen_video.py --output=lerp.mp4 --trunc=0.7 --seeds=0-31 --grid=4x2 \
  --network=https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/pokemon256.pkl

For class-conditional models, you can pass the class index via --class, a index-to-label dictionary for Imagenet can be found here. For interpolation between classes, provide, e.g., --cls=0-31 to gen_video.py. The list of classes has to be the same length as --seeds.

To generate a conditional sample sheet, run

python gen_class_samplesheet.py --outdir=sample_sheets --trunc=1.0 \
  --network=https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet128.pkl \
  --samples-per-class 4 --classes 0-32 --grid-width 32

For ImageNet models, we enable multi-modal truncation (proposed by Self-Distilled GAN). We generated 600k find 10k cluster centroids via k-means. For a given samples, multi-modal truncation finds the closest centroids and interpolates towards it. To switch from uni-model to multi-modal truncation, pass

--centroids-path=https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet_centroids.npy

No Truncation Uni-Modal Truncation Multi-Modal Truncation

Image Inversion

To invert a given image via latent optimization, and optionally use our reimplementation of Pivotal Tuning Inversion, run

python run_inversion.py --outdir=inversion_out \
  --target media/jay.png \
  --inv-steps 1000 --run-pti --pti-steps 350 \
  --network=https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet512.pkl

Provide an image via target, it is automatically resized and center-cropped to match the generator network. You do not need to provide a class for ImageNet models, we infer the class of a given sample via a pretrained classifier.

Image Editing

To use our reimplementation of StyleMC, and generate the example above, run

python run_stylemc.py --outdir=stylemc_out \
  --text-prompt "a chimpanzee | laughter | happyness| happy chimpanzee | happy monkey | smile | grin" \
  --seeds 0-256 --class-idx 367 --layers 10-30 --edit-strength 0.75 --init-seed 49 \
  --network=https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet128.pkl \
  --bigger-network https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet1024.pkl

Recommended workflow:

  • Sample images via gen_images.py.
  • Pick a sample and use it as the inital image for stylemc.py by providing --init-seed and --class-idx.
  • Find a direction in style space via --text-prompt.
  • Finetune --edit-strength, --layers, and amount of --seeds.
  • Once you found a good setting, provide a larger model via --bigger-network. The script still optimizes the direction for the smaller model, but uses the bigger model for the final output.

Pretrained Models

We provide the following pretrained models (pass the url as PATH_TO_NETWORK_PKL):

Dataset Res FID PATH
ImageNet 162 0.73 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet16.pkl
ImageNet 322 1.11 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet32.pkl
ImageNet 642 1.52 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet64.pkl
ImageNet 1282 1.77 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet128.pkl
ImageNet 2562 2.26 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet256.pkl
ImageNet 5122 2.42 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet512.pkl
ImageNet 10242 2.51 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet1024.pkl
CIFAR10 322 1.85 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/cifar10.pkl
FFHQ 2562 2.19 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/ffhq256.pkl
FFHQ 5122 2.23 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/ffhq512.pkl
FFHQ 10242 2.02 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/ffhq1024.pkl
Pokemon 2562 23.97 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/pokemon256.pkl
Pokemon 5122 23.82 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/pokemon512.pkl
Pokemon 10242 25.47 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/pokemon1024.pkl

Quality Metrics

Per default, train.py tracks FID50k during training. To calculate metrics for a specific network snapshot, run

python calc_metrics.py --metrics=fid50k_full --network=PATH_TO_NETWORK_PKL

To see the available metrics, run

python calc_metrics.py --help

We provide precomputed FID statistics for all pretrained models:

wget https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/gan-metrics.zip
unzip gan-metrics.zip -d dnnlib/

Further Information

This repo builds on the codebase of StyleGAN3 and our previous project Projected GANs Converge Faster.

More Repositories

1

sdfstudio

A Unified Framework for Surface Reconstruction
Python
1,965
star
2

occupancy_networks

This repository contains the code for the paper "Occupancy Networks - Learning 3D Reconstruction in Function Space"
Python
1,492
star
3

giraffe

This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"
Python
1,227
star
4

stylegan-t

[ICML'23] StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis
Python
1,122
star
5

mip-splatting

[CVPR'24 Best Student Paper] Mip-Splatting: Alias-free 3D Gaussian Splatting
Python
1,046
star
6

transfuser

[PAMI'23] TransFuser: Imitation with Transformer-Based Sensor Fusion for Autonomous Driving; [CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving
Python
1,023
star
7

projected-gan

[NeurIPS'21] Projected GANs Converge Faster
Python
876
star
8

unimatch

[TPAMI'23] Unifying Flow, Stereo and Depth Estimation
Python
855
star
9

convolutional_occupancy_networks

[ECCV'20] Convolutional Occupancy Networks
Python
792
star
10

differentiable_volumetric_rendering

This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"
Python
782
star
11

gaussian-opacity-fields

[SIGGRAPH Asia'24 & TOG] Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes
Python
705
star
12

monosdf

[NeurIPS'22] MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction
Python
563
star
13

shape_as_points

[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver
Python
518
star
14

tuplan_garage

[CoRL'23] Parting with Misconceptions about Learning-based Vehicle Motion Planning
Python
499
star
15

unisurf

[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction
Python
418
star
16

graf

Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"
Jupyter Notebook
398
star
17

kitti360Scripts

This repository contains utility scripts for the KITTI-360 dataset.
Python
385
star
18

neat

[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving
Python
301
star
19

navsim

[NeurIPS 2024] NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking
Python
244
star
20

occupancy_flow

This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"
Python
207
star
21

plant

[CoRL'22] PlanT: Explainable Planning Transformers via Object-Level Representations
Python
201
star
22

factor-fields

[SIGGRAPH 2023] We provide a unified formula for neural fields (Factor Fields) and a novel dictionary factorization (Dictionary Fields)
Jupyter Notebook
183
star
23

sledge

[ECCV'24] SLEDGE: Synthesizing Driving Environments with Generative Models and Rule-Based Traffic
Python
151
star
24

voxgraf

Official code release for VoxGRAF: Fast 3D-Aware Image Synthesis with Sparse Voxel Grids
Python
128
star
25

carla_garage

[ICCV'23] Hidden Biases of End-to-End Driving Models
Python
121
star
26

gta

[ICLR'24] GTA: A Geometry-Aware Attention Mechanism for Multi-view Transformers
Python
121
star
27

texture_fields

This repository contains code for the paper 'Texture Fields: Learning Texture Representations in Function Space'.
Python
115
star
28

kitti360LabelTool

JavaScript
103
star
29

counterfactual_generative_networks

[ICLR'21] Counterfactual Generative Networks
Python
102
star
30

murf

[CVPR'24] MuRF: Multi-Baseline Radiance Fields
Python
84
star
31

king

[ECCV'22] KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients
Python
73
star
32

controllable_image_synthesis

Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis, CVPR 2020
Python
70
star
33

handheld_svbrdf_geometry

On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner, CVPR2020
Python
59
star
34

connecting_the_dots

This repository contains the code for the paper "Connecting the Dots: Learning Representations for Active Monocular Depth Estimation" https://avg.is.tuebingen.mpg.de/publications/riegler2019cvpr
Python
56
star
35

frequency_bias

Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021
Python
45
star
36

good

[ICLR'23] GOOD: Exploring Geometric Cues for Detecting Objects in an Open World
Python
39
star
37

data_aggregation

This repository contains the code for the CVPR 2020 paper "Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving"
Python
38
star
38

campari

[3DV'21] CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields
Python
29
star
39

akorn

Reproducing code for the work: Artificial Kuramoto Oscillatory Neurons
22
star
40

autonomousvision.github.io

Blog of the Autonomous Vision Group at MPI-IS Tübingen and University of Tübingen.
HTML
19
star
41

hdt

[COLM'24] HDT: Hierarchical Document Transformer
Python
7
star
42

visual_abstractions

6
star
43

slides

Slide repository of the Autonomous Vision Group at MPI-IS Tübingen and University of Tübingen.
CSS
2
star
44

similarity_reconstruction

This code is based on the paper Exploiting Object Similarity in 3D Reconstruction.
C++
1
star
45

slow_flow

This code is based on the paper Slow Flow: Exploiting High-Speed Cameras for Accurate and Diverse Optical Flow Reference Data.
C++
1
star