• Stars
    star
    1,046
  • Rank 44,062 (Top 0.9 %)
  • Language
    Python
  • License
    Other
  • Created 12 months ago
  • Updated 5 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

[CVPR'24 Best Student Paper] Mip-Splatting: Alias-free 3D Gaussian Splatting

Mip-Splatting: Alias-free 3D Gaussian Splatting

Zehao Yu · Anpei Chen · Binbin Huang · Torsten Sattler · Andreas Geiger

Paper | arXiv | Project Page | Online Viewer

Logo

We introduce a 3D smoothing filter and a 2D Mip filter for 3D Gaussian Splatting (3DGS), eliminating multiple artifacts and achieving alias-free renderings.


Installation

Clone the repository and create an anaconda environment using

git clone [email protected]:autonomousvision/mip-splatting.git
cd mip-splatting

conda create -y -n mip-splatting python=3.8
conda activate mip-splatting

pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 -f https://download.pytorch.org/whl/torch_stable.html
conda install cudatoolkit-dev=11.3 -c conda-forge

pip install -r requirements.txt

pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn/

Dataset

Blender Dataset

Please download and unzip nerf_synthetic.zip from the NeRF's official Google Drive. Then generate multi-scale blender dataset with

python convert_blender_data.py --blender_dir nerf_synthetic/ --out_dir multi-scale

Mip-NeRF 360 Dataset

Please download the data from the Mip-NeRF 360 and request the authors for the treehill and flowers scenes.

Training and Evaluation

# single-scale training and single-scale testing on NeRF-synthetic dataset
python scripts/run_nerf_synthetic_stmt.py 

# multi-scale training and multi-scale testing on NeRF-synthetic dataset
python scripts/run_nerf_synthetic_mtmt.py 

# single-scale training and single-scale testing on the mip-nerf 360 dataset
python scripts/run_mipnerf360.py 

# single-scale training and multi-scale testing on the mip-nerf 360 dataset
python scripts/run_mipnerf360_stmt.py 

Online viewer

After training, you can fuse the 3D smoothing filter to the Gaussian parameters with

python create_fused_ply.py -m {model_dir}/{scene} --output_ply fused/{scene}_fused.ply"

Then use our online viewer to visualize the trained model.

Acknowledgements

This project is built upon 3DGS. Please follow the license of 3DGS. We thank all the authors for their great work and repos.

Citation

If you find our code or paper useful, please cite

@article{Yu2023MipSplatting,
  author    = {Yu, Zehao and Chen, Anpei and Huang, Binbin and Sattler, Torsten and Geiger, Andreas},
  title     = {Mip-Splatting: Alias-free 3D Gaussian Splatting},
  journal   = {arXiv:2311.16493},
  year      = {2023},
}

More Repositories

1

sdfstudio

A Unified Framework for Surface Reconstruction
Python
1,965
star
2

occupancy_networks

This repository contains the code for the paper "Occupancy Networks - Learning 3D Reconstruction in Function Space"
Python
1,492
star
3

giraffe

This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"
Python
1,227
star
4

stylegan-t

[ICML'23] StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis
Python
1,122
star
5

transfuser

[PAMI'23] TransFuser: Imitation with Transformer-Based Sensor Fusion for Autonomous Driving; [CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving
Python
1,023
star
6

stylegan-xl

[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
Python
939
star
7

projected-gan

[NeurIPS'21] Projected GANs Converge Faster
Python
876
star
8

unimatch

[TPAMI'23] Unifying Flow, Stereo and Depth Estimation
Python
855
star
9

convolutional_occupancy_networks

[ECCV'20] Convolutional Occupancy Networks
Python
792
star
10

differentiable_volumetric_rendering

This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"
Python
782
star
11

gaussian-opacity-fields

[SIGGRAPH Asia'24 & TOG] Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes
Python
705
star
12

monosdf

[NeurIPS'22] MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction
Python
563
star
13

shape_as_points

[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver
Python
518
star
14

tuplan_garage

[CoRL'23] Parting with Misconceptions about Learning-based Vehicle Motion Planning
Python
499
star
15

unisurf

[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction
Python
418
star
16

graf

Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"
Jupyter Notebook
398
star
17

kitti360Scripts

This repository contains utility scripts for the KITTI-360 dataset.
Python
385
star
18

neat

[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving
Python
301
star
19

navsim

[NeurIPS 2024] NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking
Python
244
star
20

occupancy_flow

This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"
Python
207
star
21

plant

[CoRL'22] PlanT: Explainable Planning Transformers via Object-Level Representations
Python
201
star
22

factor-fields

[SIGGRAPH 2023] We provide a unified formula for neural fields (Factor Fields) and a novel dictionary factorization (Dictionary Fields)
Jupyter Notebook
183
star
23

sledge

[ECCV'24] SLEDGE: Synthesizing Driving Environments with Generative Models and Rule-Based Traffic
Python
151
star
24

voxgraf

Official code release for VoxGRAF: Fast 3D-Aware Image Synthesis with Sparse Voxel Grids
Python
128
star
25

carla_garage

[ICCV'23] Hidden Biases of End-to-End Driving Models
Python
121
star
26

gta

[ICLR'24] GTA: A Geometry-Aware Attention Mechanism for Multi-view Transformers
Python
121
star
27

texture_fields

This repository contains code for the paper 'Texture Fields: Learning Texture Representations in Function Space'.
Python
115
star
28

kitti360LabelTool

JavaScript
103
star
29

counterfactual_generative_networks

[ICLR'21] Counterfactual Generative Networks
Python
102
star
30

murf

[CVPR'24] MuRF: Multi-Baseline Radiance Fields
Python
84
star
31

king

[ECCV'22] KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients
Python
73
star
32

controllable_image_synthesis

Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis, CVPR 2020
Python
70
star
33

handheld_svbrdf_geometry

On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner, CVPR2020
Python
59
star
34

connecting_the_dots

This repository contains the code for the paper "Connecting the Dots: Learning Representations for Active Monocular Depth Estimation" https://avg.is.tuebingen.mpg.de/publications/riegler2019cvpr
Python
56
star
35

frequency_bias

Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021
Python
45
star
36

good

[ICLR'23] GOOD: Exploring Geometric Cues for Detecting Objects in an Open World
Python
39
star
37

data_aggregation

This repository contains the code for the CVPR 2020 paper "Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving"
Python
38
star
38

campari

[3DV'21] CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields
Python
29
star
39

akorn

Reproducing code for the work: Artificial Kuramoto Oscillatory Neurons
22
star
40

autonomousvision.github.io

Blog of the Autonomous Vision Group at MPI-IS Tübingen and University of Tübingen.
HTML
19
star
41

hdt

[COLM'24] HDT: Hierarchical Document Transformer
Python
7
star
42

visual_abstractions

6
star
43

slides

Slide repository of the Autonomous Vision Group at MPI-IS Tübingen and University of Tübingen.
CSS
2
star
44

similarity_reconstruction

This code is based on the paper Exploiting Object Similarity in 3D Reconstruction.
C++
1
star
45

slow_flow

This code is based on the paper Slow Flow: Exploiting High-Speed Cameras for Accurate and Diverse Optical Flow Reference Data.
C++
1
star