• Stars
    star
    743
  • Rank 61,046 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created over 1 year ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

[ICCV2023] Delicate Textured Mesh Recovery from NeRF via Adaptive Surface Refinement

nerf2mesh

This repository contains a PyTorch re-implementation of the paper: Delicate Textured Mesh Recovery from NeRF via Adaptive Surface Refinement.

Project Page | Arxiv | Paper | Models

News (2023.5.3): support background removal and SDF mode for stage 0, which produces more robust and smooth mesh for single-object reconstruction:

Install

git clone https://github.com/ashawkey/nerf2mesh.git
cd nerf2mesh

Install with pip

pip install -r requirements.txt

# tiny-cuda-nn
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

# nvdiffrast
pip install git+https://github.com/NVlabs/nvdiffrast/

# pytorch3d
pip install git+https://github.com/facebookresearch/pytorch3d.git

Build extension (optional)

By default, we use load to build the extension at runtime. However, this may be inconvenient sometimes. Therefore, we also provide the setup.py to build each extension:

# install all extension modules
bash scripts/install_ext.sh

# if you want to install manually, here is an example:
cd raymarching
python setup.py build_ext --inplace # build ext only, do not install (only can be used in the parent directory)
pip install . # install to python path (you still need the raymarching/ folder, since this only install the built extension.)

Tested environments

  • Ubuntu 22 with torch 1.12 & CUDA 11.6 on a V100.

Usage

We support the original NeRF data format like nerf-synthetic, and COLMAP dataset like Mip-NeRF 360. Please download and put them under ./data.

First time running will take some time to compile the CUDA extensions.

Basics

### Stage0 (NeRF, continuous, volumetric rendering), this stage exports a coarse mesh under <workspace>/mesh_stage0/

# nerf
python main.py data/nerf_synthetic/lego/ --workspace trial_syn_lego/ -O --bound 1 --scale 0.8 --dt_gamma 0 --stage 0 --lambda_tv 1e-8

# colmap
python main.py data/garden/ --workspace trial_360_garden -O --data_format colmap --bound 16 --enable_cam_center --enable_cam_near_far --scale 0.3 --downscale 4 --stage 0 --lambda_entropy 1e-3 --clean_min_f 16 --clean_min_d 10 --lambda_tv 2e-8 --visibility_mask_dilation 50

### Stage1 (Mesh, binarized, rasterization), this stage exports a fine mesh with textures under <workspace>/mesh_stage1/

# nerf
python main.py data/nerf_synthetic/lego/ --workspace trial_syn_lego/ -O --bound 1 --scale 0.8 --dt_gamma 0 --stage 1

# colmap
python main.py data/garden/ --workspace trial_360_garden   -O --data_format colmap --bound 16 --enable_cam_center --enable_cam_near_far --scale 0.3 --downscale 4 --stage 1 --iters 10000

### Web Renderer
# you can simply open <workspace>/mesh_stage1/mesh.obj with a 3D viewer to visualize the diffuse texture.
# to render full diffuse + specular, you'll need to host this folder (e.g., by vscode live server), and open renderer.html for further instructions.

Custom Dataset

Tips:

  • To get best mesh quality, you may need to adjust --scale to let the most interested object fall inside the unit box [-1, 1]^3, which can be visualized by appending --vis_pose.
  • To better model background (especially for outdoor scenes), you may need to adjust --bound to let most sparse points fall into the full box [-bound, bound]^3, which can also be visualized by appending --vis_pose.
  • For single object centered captures focusing on mesh assets quality:
    • remove the background by scripts/remove_bg.py and only reconstruct the targeted object.
    • use --sdf to enable sdf based stage 0 model.
    • use --diffuse_only if you only want to get the diffuse texture.
    • adjust --decimate_target 1e5 to control stage 0 number of mesh faces, and adjust --refine_remesh_size 0.01 to control stage 1 number of mesh faces (average edge length).
    • adjust --lambda_normal 1e-2 for more smooth surface.
  • For forward-facing captures:
    • remove --enable_cam_center so the scene center is determined by sparse points instead of camera positions.
# prepare your video or images under /data/custom, and run colmap (assumed installed):
python scripts/colmap2nerf.py --video ./data/custom/video.mp4 --run_colmap # if use video
python scripts/colmap2nerf.py --images ./data/custom/images/ --run_colmap # if use images

# generate downscaled images if resolution is very high and OOM (asve to`data/<name>/images_{downscale}`) 
python scripts/downscale.py data/<name> --downscale 4
# NOTE: remember to append `--downscale 4` as well when running main.py

# perform background removal for single object 360 captures (save to 'data/<name>/mask')
python scripts/remove_bg.py data/<name>/images
# NOTE: the mask quality depends on background complexity, do check the mask!

# recommended options for single object 360 captures
python main.py data/custom/ --workspace trial_custom -O --data_format colmap --bound 1 --dt_gamma 0 --stage 0 --clean_min_f 16 --clean_min_d 10 --visibility_mask_dilation 50 --iters 10000 --decimate_target 1e5 --sdf
# NOTE: for finer faces, try --decimate_target 3e5

python main.py data/custom/ --workspace trial_custom -O --data_format colmap --bound 1 --dt_gamma 0 --stage 1 --iters 5000 --lambda_normal 1e-2 --refine_remesh_size 0.01 --sdf
# NOTE: for finer faces, try --lambda_normal 1e-1 --refine_remesh_size 0.005

# recommended options for outdoor 360-inwarding captures
python main.py data/custom/ --workspace trial_custom -O --data_format colmap --bound 16 --enable_cam_center --enable_cam_near_far --stage 0 --lambda_entropy 1e-3 --clean_min_f 16 --clean_min_d 10 --lambda_tv 2e-8 --visibility_mask_dilation 50

python main.py data/custom/ --workspace trial_custom -O --data_format colmap --bound 16 --enable_cam_center --enable_cam_near_far --stage 1 --iters 10000 --lambda_normal 1e-3

# recommended options for forward-facing captures
python main.py data/custom/ --workspace trial_custom -O --data_format colmap --bound 2 --scale 0.1 --stage 0 --clean_min_f 16 --clean_min_d 10 --lambda_tv 2e-8 --visibility_mask_dilation 50

python main.py data/custom/ --workspace trial_custom -O --data_format colmap --bound 2 --scale 0.1 --stage 1 --iters 10000 --lambda_normal 1e-3

Advanced Usage

### -O: the recommended setting, equals
--fp16 --preload --mark_untrained --random_image_batch --adaptive_num_rays --refine --mesh_visibility_culling

### load checkpoint
--ckpt latest # by default we load the latest checkpoint in the workspace
--ckpt scratch # train from scratch. For stage 1, this will still load the stage 0 model as an initialization.
--ckpt trial/checkpoints/xxx.pth # specify it by path

### testing
--test # test, save video and mesh
--test_no_video # do not save video
--test_no_mesh # do not save mesh

### dataset related
--data_format [colmap|nerf|dtu] # dataset format
--enable_cam_center # use camera center instead of sparse point center as scene center (colmap dataset only)
--enable_cam_near_far # estimate camera near & far from sparse points (colmap dataset only)

--bound 16 # scene bound set to [-16, 16]^3, note that only meshes inside the center [-1, 1]^3 will be adaptively refined!
--scale 0.3 # camera scale, if not specified, automatically estimate one based on camera positions. Important targets should be scaled into the center [-1, 1]^3.

### visualization 
--vis_pose # viusalize camera poses and sparse points (sparse points are colmap dataset only)
--gui # open gui (only for testing, training in gui is not well supported!)

### balance between surface quality / rendering quality

# increase these weights to get better surface quality but worse rendering quality
--lambda_tv 1e-7 # total variation loss (stage 0)
--lambda_entropy 1e-3 # entropy on rendering weights (transparency, alpha), encourage them to be either 0 or 1 (stage 0)
--lambda_lap 0.001 # laplacian smoothness loss (stage 1)
--lambda_normal 0.001 # normal consistency loss (stage 1)
--lambda_offsets 0.1 # vertex offsets L2 loss (stage 1)
--lambda_edgelen 0.1 # edge length L2 loss (stage 1)

# set all smoothness regularizations to 0, usually get the best rendering quality
--wo_smooth

# only use diffuse shading
--diffuse_only

### coarse mesh extraction & post-processing
--mcubes_reso 512 # marching cubes resolution
--decimate_target 300000 # decimate raw mesh to this face number
--clean_min_d 5 # isolated floaters with smaller diameter will be removed
--clean_min_f 8 # isolated floaters with fewer faces will be removed
--visibility_mask_dilation 5 # dilate iterations after performing visibility face culling

### fine mesh exportation
--texture_size 4096 # max texture image resolution
--ssaa 2 # super-sampling anti-alias ratio
--refine_size 0.01 # finest edge len at subdivision
--refine_decimate_ratio 0.1 # decimate ratio at each refine step
--refine_remesh_size 0.02 # remesh edge len after decimation

### Depth supervision (colmap dataset only)

# download depth checkpoints (omnidata v2)
cd depth_tools
bash download_models.sh
cd ..

# generate dense depth (save to `data/<name>/depths`)
python depth_tools/extract_depth.py data/<name>/images_4

# enable dense depth training
python main.py data/<name> -O --bound 16 --data_format colmap --enable_dense_depth

Please check the scripts directory for more examples on common datasets, and check main.py for all options.

Acknowledgement

Citation

@article{tang2022nerf2mesh,
  title={Delicate Textured Mesh Recovery from NeRF via Adaptive Surface Refinement},
  author={Tang, Jiaxiang and Zhou, Hang and Chen, Xiaokang and Hu, Tianshu and Ding, Errui and Wang, Jingdong and Zeng, Gang},
  journal={arXiv preprint arXiv:2303.02091},
  year={2022}
}

More Repositories

1

stable-dreamfusion

Text-to-3D & Image-to-3D & Mesh Exportation with NeRF + Diffusion.
Python
7,270
star
2

torch-ngp

A pytorch CUDA extension implementation of instant-ngp (sdf and nerf), with a GUI.
Python
1,863
star
3

RAD-NeRF

Real-time Neural Radiance Talking Portrait Synthesis via Audio-spatial Decomposition
Python
707
star
4

Drag3D

DragGAN meets GET3D for interactive mesh generation and editing.
Python
456
star
5

diff-gaussian-rasterization

Cuda
308
star
6

Segment-Anything-NeRF

Segment-anything interactively in NeRF.
Python
277
star
7

chatgpt_please_improve_my_paper_writing

a thin wrapper of chatgpt for improving paper writing.
Python
251
star
8

torch-merf

An unofficial pytorch implementation of MeRF
Python
137
star
9

dreamfields-torch

A pytorch implementation of dreamfields with modifications.
Python
134
star
10

fantasia3d.unofficial

An unofficial reproduction of Fantasia3D
Python
127
star
11

CCNeRF

[NeurIPS 2022] Compressible-composable NeRF via Rank-residual Decomposition.
Python
125
star
12

nerf_template

a simple template for practicing NeRF.
Python
125
star
13

cubvh

CUDA Mesh BVH tools.
Cuda
121
star
14

jiif

[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution
Python
90
star
15

raytracing

A CUDA Mesh RayTracer with BVH acceleration, with python bindings and a GUI.
Cuda
83
star
16

volumentations

3D volume data augmentation package inspired by albumentations
Python
78
star
17

kiuikit

A maintained, reusable and trustworthy toolkit for computer vision tasks.
Python
42
star
18

envlight

Environment light tools.
Python
38
star
19

FocalLoss.pytorch

Implementation of focal loss in pytorch for unbalanced classification.
Python
35
star
20

dimr

[ECCV 2022] Disentangled Instance Mesh Reconstruction
Python
27
star
21

NotVeryFastNeRF

an unofficial and partial implementation of FastNeRF
Jupyter Notebook
25
star
22

note

notebook archive
PowerShell
19
star
23

3d_human_poser

a naive 3d human pose editor GUI.
Python
16
star
24

vscode-mesh-viewer

A 3D mesh viewer for vscode
JavaScript
16
star
25

CCA

CCA, DCCA, DCCAE, ConvCCA
Python
14
star
26

grid_put

An operation trying to do the opposite of F.grid_sample
Python
13
star
27

index_grid_sample

Extension to `F.grid_sample` that allows using batch index per grid point.
Cuda
12
star
28

made-in-heaven-timer

create timer videos at any speed.
Python
11
star
29

q10r

A simple web questionnaire application.
Python
6
star
30

ddddsr

A python library for end-to-end image super resolution.
Python
5
star
31

lightnet

light weight convolutional neural network implementation in one c++ file.
C++
5
star
32

bsp_cvae

Python
4
star
33

learn_matmul

Cuda
3
star
34

trojan-privoxy-client

for unraid proxy.
Dockerfile
2
star
35

numpytorch

Monkey-patched numpy with pytorch syntax
Python
2
star
36

point_seg_dist

a CUDA implementation of points to lines/segments distance
C
2
star
37

pytorch_ddp_examples

Python
1
star
38

uuunet

Python
1
star
39

fbxloader

FBX file loader for python (only supports geometry currently)
Python
1
star
40

unraid_tutorial

2021年的unraid搭建教程
1
star
41

Uncertainty

program to calculate uncertainty for Physics experiment.
Python
1
star
42

CapsNet.pytorch

reimplementation of capsule network for MNIST classification.
Python
1
star
43

nonsense

NoNSeNSe frontend.
JavaScript
1
star
44

JLGCN

Joing learning of graphs and features
Python
1
star
45

live-speech-recognition

A simple sliding window based real-time speech recognition example.
Python
1
star
46

dullPLYviewer

HTML
1
star
47

MaxClique

Heuristic algorithms to solve the max clique problem.
C++
1
star
48

hawtorch

pytorch extensions for code reuse
Python
1
star