• Stars
    star
    137
  • Rank 266,121 (Top 6 %)
  • Language
    Python
  • License
    MIT License
  • Created over 1 year ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

An unofficial pytorch implementation of MeRF

torch-MeRF

An unofficial pytorch implementation of MeRF: Memory-Efficient Radiance Fields for Real-time View Synthesis in Unbounded Scenes.

fox.mp4

We support exporting almost lossless baked assets for real-time webGL rendering.

Install

git clone https://github.com/ashawkey/torch-merf.git
cd torch-merf

Install with pip

pip install -r requirements.txt

Build extension (optional)

By default, we use load to build the extension at runtime. However, this may be inconvenient sometimes. Therefore, we also provide the setup.py to build each extension:

# install all extension modules
bash scripts/install_ext.sh

# if you want to install manually, here is an example:
cd raymarching
python setup.py build_ext --inplace # build ext only, do not install (only can be used in the parent directory)
pip install . # install to python path (you still need the raymarching/ folder, since this only install the built extension.)

Tested environments

  • Ubuntu 22 with torch 1.12 & CUDA 11.6 on a V100.

Usage

We majorly support COLMAP dataset like Mip-NeRF 360. Please download and put them under ./data.

For custom datasets:

# prepare your video or images under /data/custom, and run colmap (assumed installed):
python scripts/colmap2nerf.py --video ./data/custom/video.mp4 --run_colmap # if use video
python scripts/colmap2nerf.py --images ./data/custom/images/ --run_colmap # if use images

Basics

First time running will take some time to compile the CUDA extensions.

## train
# mip-nerf 360
python main.py data/bonsai/ --workspace trial_bonsai --enable_cam_center --downscale 4
# front-facing
python main.py data/nerf_llff_data/fern --workspace trial_fern --downscale 4
# nerf-like (need to specify --scale manually)
python main.py data/fox/ --workspace trial_fox --data_format nerf --scale 0.3


## test (export video and baked assets)
python main.py data/bonsai/ --workspace trial_bonsai --enable_cam_center --downscale 4 --test
# the default baking can be very slow (30 min+): it renders all images at full resolution from the training dataset. Use --fast_baking to speed up (just ~1min) at the cost of possibily missing some background blocks:
python main.py data/bonsai/ --workspace trial_bonsai --enable_cam_center --downscale 4 --test --test_no_video --fast_baking

## web renderer
# use VS Code to host the folder and open ./renderer/renderer.html
# follow the instructions and add the baked assets path as URL parameters to start rendering.
# for example:
http://localhost:5500/renderer/renderer.html?dir=../trial_bonsai/assets
http://localhost:5500/renderer/renderer.html?dir=../trial_bonsai/assets&quality=low # phone, low, medium, high

## dense depth supervision (experimental)
cd depth_tools
bash download_models.sh
cd ..

python depth_tools/extract_depth.py --in_dir data/room/images_4 --out_dir data/room/depths

python main.py data/room/ --workspace trial_room --enable_cam_center --downscale 4 --enable_dense_depth

Please check the scripts directory for more examples on common datasets, and check main.py for all options.

Implementation Notes

Modification of web renderer

The web renderer is slightly modified from the official version, so it is not compatible with the original assets.

  • Frequency encoding convention (viewdependency.glsl):

    # original
    x, sin(x), sin(2x), sin(4x), ..., cos(x), cos(2x), cos(4x), ...
    # current
    x, sin(x), cos(x), sin(2x), cos(2x), sin(4x), cos(4x), ...
  • Interpolation alignment of sparse grid (fragment.glsl):

    // original
    vec3 posSparseGrid = (z - minPosition) / voxelSize - 0.5;
    // current
    vec3 posSparseGrid = (z - minPosition) / voxelSize;

Lossless baking

The baking can be lossless since the baked assets' resolution is the same as the network's resolution, but interpolation must happen after all non-linear functions (i.e., MLP).

This makes the usual hashgrid + MLP combination invalid as

$$ \text{MLP}(\sum_i(w_i * x_i)) \ne \sum_i(w_i * \text{MLP}(x_i)) $$

(using a single linear layer should be able to work though? but the paper uses 2 layers with 64 hidden dims...)

In this implementation we have to manually perform bilinear/trilinear interpolation in torch, and query the 4/8 corners of the grid for each sampling point, which is quite inefficient...

Interpolation alignment

OpenGL's texture() behaves like the F.interpolate(..., align_corners=False). It seems the sparse grid uses align_corners=True convention, while the triplane uses align_corners=False convention... but maybe I'm wrong somewhere, since I have to modify the web renderer to make it work.

gridencoder

The default API is slightly modified for convenience, we need to pass in values in the range of [0, 1] (the bound parameter is removed).

Performance reference

Bonsai Counter Kitchen Room Bicycle Garden Stump
MipNeRF 360 (~days) 33.46 29.55 32.23 31.63 24.57 26.98 26.40
nerfacto (~12 minutes) 31.10 26.65 30.61 31.44 23.74 25.31 25.48
this impl (~1 hour) 27.81 25.40 27.15 29.17 22.29 24.25 23.70

This implmentation (v.s. paper): Indoor 27.38 (v.s. 27.80), Ourdoor 23.41 (v.s. 23.19)

Ours are tested on a V100. Please check the commands under scripts/ to reproduce.

Acknowledgement

The original paper:

@article{reiser2023merf,
  title={MERF: Memory-Efficient Radiance Fields for Real-time View Synthesis in Unbounded Scenes},
  author={Reiser, Christian and Szeliski, Richard and Verbin, Dor and Srinivasan, Pratul P and Mildenhall, Ben and Geiger, Andreas and Barron, Jonathan T and Hedman, Peter},
  journal={arXiv preprint arXiv:2302.12249},
  year={2023}
}

More Repositories

1

stable-dreamfusion

Text-to-3D & Image-to-3D & Mesh Exportation with NeRF + Diffusion.
Python
7,270
star
2

torch-ngp

A pytorch CUDA extension implementation of instant-ngp (sdf and nerf), with a GUI.
Python
1,863
star
3

nerf2mesh

[ICCV2023] Delicate Textured Mesh Recovery from NeRF via Adaptive Surface Refinement
Python
743
star
4

RAD-NeRF

Real-time Neural Radiance Talking Portrait Synthesis via Audio-spatial Decomposition
Python
707
star
5

Drag3D

DragGAN meets GET3D for interactive mesh generation and editing.
Python
456
star
6

diff-gaussian-rasterization

Cuda
308
star
7

Segment-Anything-NeRF

Segment-anything interactively in NeRF.
Python
277
star
8

chatgpt_please_improve_my_paper_writing

a thin wrapper of chatgpt for improving paper writing.
Python
251
star
9

dreamfields-torch

A pytorch implementation of dreamfields with modifications.
Python
134
star
10

fantasia3d.unofficial

An unofficial reproduction of Fantasia3D
Python
127
star
11

CCNeRF

[NeurIPS 2022] Compressible-composable NeRF via Rank-residual Decomposition.
Python
125
star
12

nerf_template

a simple template for practicing NeRF.
Python
125
star
13

cubvh

CUDA Mesh BVH tools.
Cuda
121
star
14

jiif

[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution
Python
90
star
15

raytracing

A CUDA Mesh RayTracer with BVH acceleration, with python bindings and a GUI.
Cuda
83
star
16

volumentations

3D volume data augmentation package inspired by albumentations
Python
78
star
17

kiuikit

A maintained, reusable and trustworthy toolkit for computer vision tasks.
Python
42
star
18

envlight

Environment light tools.
Python
38
star
19

FocalLoss.pytorch

Implementation of focal loss in pytorch for unbalanced classification.
Python
35
star
20

dimr

[ECCV 2022] Disentangled Instance Mesh Reconstruction
Python
27
star
21

NotVeryFastNeRF

an unofficial and partial implementation of FastNeRF
Jupyter Notebook
25
star
22

note

notebook archive
PowerShell
19
star
23

3d_human_poser

a naive 3d human pose editor GUI.
Python
16
star
24

vscode-mesh-viewer

A 3D mesh viewer for vscode
JavaScript
16
star
25

CCA

CCA, DCCA, DCCAE, ConvCCA
Python
14
star
26

grid_put

An operation trying to do the opposite of F.grid_sample
Python
13
star
27

index_grid_sample

Extension to `F.grid_sample` that allows using batch index per grid point.
Cuda
12
star
28

made-in-heaven-timer

create timer videos at any speed.
Python
11
star
29

q10r

A simple web questionnaire application.
Python
6
star
30

ddddsr

A python library for end-to-end image super resolution.
Python
5
star
31

lightnet

light weight convolutional neural network implementation in one c++ file.
C++
5
star
32

bsp_cvae

Python
4
star
33

learn_matmul

Cuda
3
star
34

trojan-privoxy-client

for unraid proxy.
Dockerfile
2
star
35

numpytorch

Monkey-patched numpy with pytorch syntax
Python
2
star
36

point_seg_dist

a CUDA implementation of points to lines/segments distance
C
2
star
37

pytorch_ddp_examples

Python
1
star
38

uuunet

Python
1
star
39

fbxloader

FBX file loader for python (only supports geometry currently)
Python
1
star
40

unraid_tutorial

2021εΉ΄ηš„unraid搭建教程
1
star
41

Uncertainty

program to calculate uncertainty for Physics experiment.
Python
1
star
42

CapsNet.pytorch

reimplementation of capsule network for MNIST classification.
Python
1
star
43

nonsense

NoNSeNSe frontend.
JavaScript
1
star
44

JLGCN

Joing learning of graphs and features
Python
1
star
45

live-speech-recognition

A simple sliding window based real-time speech recognition example.
Python
1
star
46

dullPLYviewer

HTML
1
star
47

MaxClique

Heuristic algorithms to solve the max clique problem.
C++
1
star
48

hawtorch

pytorch extensions for code reuse
Python
1
star