• Stars
    star
    2,312
  • Rank 19,913 (Top 0.4 %)
  • Language
    Python
  • License
    Other
  • Created over 10 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Multilingual text (NLP) processing toolkit

polyglot

Downloads Latest Version Build Status Documentation Status

Polyglot is a natural language pipeline that supports massive multilingual applications.

Features

  • Tokenization (165 Languages)
  • Language detection (196 Languages)
  • Named Entity Recognition (40 Languages)
  • Part of Speech Tagging (16 Languages)
  • Sentiment Analysis (136 Languages)
  • Word Embeddings (137 Languages)
  • Morphological analysis (135 Languages)
  • Transliteration (69 Languages)

Developer

  • Rami Al-Rfou @ rmyeid gmail com

Quick Tutorial

import polyglot
from polyglot.text import Text, Word

Language Detection

text = Text("Bonjour, Mesdames.")
print("Language Detected: Code={}, Name={}\n".format(text.language.code, text.language.name))

Language Detected: Code=fr, Name=French

Tokenization

zen = Text("Beautiful is better than ugly. "
           "Explicit is better than implicit. "
           "Simple is better than complex.")
print(zen.words)

[u'Beautiful', u'is', u'better', u'than', u'ugly', u'.', u'Explicit', u'is', u'better', u'than', u'implicit', u'.', u'Simple', u'is', u'better', u'than', u'complex', u'.']

print(zen.sentences)

[Sentence("Beautiful is better than ugly."), Sentence("Explicit is better than implicit."), Sentence("Simple is better than complex.")]

Part of Speech Tagging

text = Text(u"O primeiro uso de desobediência civil em massa ocorreu em setembro de 1906.")

print("{:<16}{}".format("Word", "POS Tag")+"\n"+"-"*30)
for word, tag in text.pos_tags:
    print(u"{:<16}{:>2}".format(word, tag))

Word POS Tag

O DET primeiro ADJ uso NOUN de ADP desobediência NOUN civil ADJ em ADP massa NOUN ocorreu ADJ em ADP setembro NOUN de ADP 1906 NUM . PUNCT

Named Entity Recognition

text = Text(u"In Großbritannien war Gandhi mit dem westlichen Lebensstil vertraut geworden")
print(text.entities)

[I-LOC([u'Gro\xdfbritannien']), I-PER([u'Gandhi'])]

Polarity

print("{:<16}{}".format("Word", "Polarity")+"\n"+"-"*30)
for w in zen.words[:6]:
    print("{:<16}{:>2}".format(w, w.polarity))

Word Polarity

Beautiful 0 is 0 better 1 than 0 ugly -1 . 0

Embeddings

word = Word("Obama", language="en")
print("Neighbors (Synonms) of {}".format(word)+"\n"+"-"*30)
for w in word.neighbors:
    print("{:<16}".format(w))
print("\n\nThe first 10 dimensions out the {} dimensions\n".format(word.vector.shape[0]))
print(word.vector[:10])

Neighbors (Synonms) of Obama

Bush Reagan Clinton Ahmadinejad Nixon Karzai McCain Biden Huckabee Lula

The first 10 dimensions out the 256 dimensions

[-2.57382345 1.52175975 0.51070285 1.08678675 -0.74386948 -1.18616164

2.92784619 -0.25694436 -1.40958667 -2.39675403]

Morphology

word = Text("Preprocessing is an essential step.").words[0]
print(word.morphemes)

[u'Pre', u'process', u'ing']

Transliteration

from polyglot.transliteration import Transliterator
transliterator = Transliterator(source_lang="en", target_lang="ru")
print(transliterator.transliterate(u"preprocessing"))

препрокессинг