Object-Detection-API-Tensorflow
Features
Every model is implemented in only one file!
Models
Yolo2
Yolo3
SSD
RetinaNet
RefineDet
Light Head Rcnn
PFPNet
CenterNet
FCOS
Train your own data
Train your own data
1. TFRecord generation
-
voc format dataset
-
fill in utils.voc_classname_encoder.py
-
run utils.test_voc_utils.py
2. config online image augmentor
fill in dict 'image_augmentor_config' in test-model.py
see utils.image_augmentor.py for details
see https://github.com/Stick-To/Online_Image_Augmentor_tensorflow for details
3. config model
fill in dict 'config' in test-model.py
4. Train
run test-model.py
The pre-trained vgg_16.ckpt could be downloaded from http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz
5. Test
run annotated code in test-model.py
6. ImageNet pretraining
see utils.tfrecord_imagenet_utils.py
7. different conv backone
https://github.com/Stick-To/Deep_Conv_Backone
8. Instantiation of result
corresponding repository in https://github.com/Stick-To
Experimental Environment
python3.7 tensorflow1.13