• Stars
    star
    4,773
  • Rank 8,833 (Top 0.2 %)
  • Language
    HTML
  • License
    Apache License 2.0
  • Created almost 7 years ago
  • Updated about 1 month ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Deep Learning Visualization Toolkit(『飞桨』深度学习可视化工具 )

中文

Build Status PyPI Downloads License

QQ Group

Introduction

VisualDL, a visualization analysis tool of PaddlePaddle, provides a variety of charts to show the trends of parameters, and visualizes model structures, data samples, histograms of tensors, PR curves , ROC curves and high-dimensional data distributions. It enables users to understand the training process and the model structure more clearly and intuitively so as to optimize models efficiently.

VisualDL provides various visualization functions, including tracking metrics in real-time, visualizing the model structure, displaying the data sample, visualizing the relationship between hyperparameters and model metrics, presenting the changes of distributions of tensors, showing the pr curves, projecting high-dimensional data to a lower dimensional space and more. Additionally, VisualDL provides VDL.service, which enables developers easily to save, track and share visualization results of experiments. For specific guidelines of each function, please refer to VisualDL User Guide. For up-to-date experience, please feel free to try our Online Demo. Currently, VisualDL iterates rapidly and new functions will be continuously added.

Browsers supported by VisualDL are:

  • Google Chrome ≥ 79
  • Firefox ≥ 67
  • Microsoft Edge ≥ 79
  • Safari ≥ 11.1

VisualDL natively supports the use of Python. Developers can retrieve plentiful visualization results by simply adding a few lines of Python code into the model before training.

Contents

Key Highlights

Easy to Use

The high-level design of API makes it easy to use. Only one click can initiate the visualization of model structures.

Various Functions

The function contains the visualization of training parameters, data samples, graph structures, histograms of tensors, PR curves and high-dimensional data distributions.

High Compatibility

VisualDL provides the visualization of the mainstream model structures such as Paddle, ONNX, Caffe, widely supporting visual analysis for diverse users.

Fully Support

By Integrating into PaddlePaddle and related modules, VisualDL allows developers to use different components without obstructions, and thus to have the best experience in the PaddlePaddle ecosystem.

Installation

Install by PiP

python -m pip install visualdl -i https://mirror.baidu.com/pypi/simple

Install by Code

git clone https://github.com/PaddlePaddle/VisualDL.git
cd VisualDL

python setup.py bdist_wheel
pip install --upgrade dist/visualdl-*.whl

Please note that Python 2 is no longer maintained officially since January 1, 2020. VisualDL now only supports Python 3 in order to ensure the usability of codes.

Usage Guideline

VisualDL stores the data, parameters and other information of the training process in a log file. Users can launch the panel to observe the visualization results.

1. Log

The Python SDK is provided at the back end of VisualDL, and a logger can be customized through LogWriter. The interface description is shown as follows:

class LogWriter(logdir=None,
                max_queue=10,
                flush_secs=120,
                filename_suffix='',
                **kwargs)

Interface Parameters

parameters type meaning
logdir string The path location of log file. VisualDL will create a log file under this path to record information generated by the training process. If not specified, the path will be runs/${CURRENT_TIME}as default.
max_queue int The maximum capacity of the data generated before recording in a log file. Default value is 10. If the capacity is reached, the data are immediately written into the log file.
flush_secs int The maximum cache time of the data generated before recording in a log file. Default value is 120. When this time is reached, the data are immediately written to the log file. (When the log message queue reaches the maximum cache time or maximum capacity, it will be written to the log file immediately)
filename_suffix string Add a suffix to the default log file name.
display_name string This parameter is displayed in the location of Select Data Stream in the panel. If not set, the default name is logdir.(When logdir is too long or needed to be hidden).
file_name string Set the name of the log file. If the file_name already exists, setting the file_name will be new records in the same log file, which will continue to be used. Note that the name should include 'vdlrecords'.

Example

Create a log file and record scalar values:

from visualdl import LogWriter

# create a log file under `./log/scalar_test/train`
with LogWriter(logdir="./log/scalar_test/train") as writer:
    # use `add_scalar` to record scalar values
    writer.add_scalar(tag="acc", step=1, value=0.5678)
    writer.add_scalar(tag="acc", step=2, value=0.6878)
    writer.add_scalar(tag="acc", step=3, value=0.9878)
# you can also use the following method without using context manager `with`:
"""
writer = LogWriter(logdir="./log/scalar_test/train")

writer.add_scalar(tag="acc", step=1, value=0.5678)
writer.add_scalar(tag="acc", step=2, value=0.6878)
writer.add_scalar(tag="acc", step=3, value=0.9878)

writer.close()
"""

2. Launch Panel

In the above example, the log has recorded three sets of scalar values. Developers can view the visualization results of the log file through launching the visualDL panel. There are two ways to launch the log file:

Launch by Command Line

Use the command line to launch the VisualDL panel:

visualdl --logdir <dir_1, dir_2, ... , dir_n> --model <model_file> --host <host> --port <port> --cache-timeout <cache_timeout> --language <language> --public-path <public_path> --api-only --component_tabs <tab_name1, tab_name2, ...>

Parameter details:

parameters meaning
--logdir Set one or more directories of the log. All the logs in the paths or subdirectories will be displayed on the VisualDL Board indepentently.
--model Set a path to the model file (not a directory). VisualDL will visualize the model file in Graph page. PaddlePaddle、ONNX、Keras、Core ML、Caffe and other model formats are supported. Please refer to Graph - Functional Instructions.
--host Specify IP address. The default value is 127.0.0.1. Specify it as 0.0.0.0 or public IP address so that other machines can visit VisualDL Board.
--port Set the port. The default value is 8040.
--cache-timeout Cache time of the backend. During the cache time, the front end requests the same URL multiple times, and then the returned data are obtained from the cache. The default cache time is 20 seconds.
--language The language of the VisualDL panel. Language can be specified as 'en' or 'zh', and the default is the language used by the browser.
--public-path The URL path of the VisualDL panel. The default path is '/app', meaning that the access address is 'http://<host>:<port>/app'.
--api-only Decide whether or not to provide only API. If this parameter is set, VisualDL will only provides API service without displaying the web page, and the API address is 'http://<host>:<port>/<public_path>/api'. Additionally, If the public_path parameter is not specified, the default address is 'http://<host>:<port>/api'.
--component_tabs Decide which components are presented in page, currently support 15 components, i.e. 'scalar', 'image', 'text', 'embeddings', 'audio', 'histogram', 'hyper_parameters', 'static_graph', 'dynamic_graph', 'pr_curve', 'roc_curve', 'profiler', 'x2paddle', 'fastdeploy_server', 'fastdeploy_client'. If this parameter is set, only specified components will be presented. If not set, and specify --logdir parameter, only components with data in vdlrecords log are presented. If both --component_tabs and --logdir are not set, only present 'static_graph', 'x2paddle', 'fastdeploy_server', 'fastdeploy_client' components by default

To visualize the log file generated in the previous step, developers can launch the panel through the command:

visualdl --logdir ./log

Launch in Python Script

Developers can start the VisualDL panel in Python script as follows:

visualdl.server.app.run(logdir,
                        model="path/to/model",
                        host="127.0.0.1",
                        port=8080,
                        cache_timeout=20,
                        language=None,
                        public_path=None,
                        api_only=False,
                        open_browser=False)

Please note: since all parameters are indefinite except logdir, developers should specify parameter names when using them.

The interface parameters are as follows:

parameters type meaning
logdir string or list[string_1, string_2, ... , string_n] Set one or more directories of the log. All the logs in the paths or subdirectories will be displayed on the VisualDL Board indepentently.
model string Set a path to the model file (not a directory). VisualDL will visualize the model file in Graph page.
host string Specify IP address. The default value is 127.0.0.1. Specify it as 0.0.0.0 or public IP address so that other machines can visit VisualDL Board.
port int Set the port. The default value is 8040.
cache_timeout int Cache time of the backend. During the cache time, the front end requests the same URL multiple times, and then the returned data are obtained from the cache. The default cache time is 20 seconds.
language string The language of the VisualDL panel. Language can be specified as 'en' or 'zh', and the default is the language used by the browser.
public_path string The URL path of the VisualDL panel. The default path is '/app', meaning that the access address is 'http://<host>:<port>/app'.
api_only boolean Decide whether or not to provide only API. If this parameter is set, VisualDL will only provides API service without displaying the web page, and the API address is 'http://<host>:<port>/<public_path>/api'. Additionally, If the parameter public_path is not specified, the default address is 'http://<host>:<port>/api'.
open_browser boolean Whether or not to open the browser. If this parameter is set as True, the browser will be opened automatically and VisualDL panel will be launched at the same time. If parameter api_only is specified as True, parameter open_browser can be ignored.
component_tabs string or list[string_1, string_2, ... , string_n] Decide which components are presented in page, currently support 15 components, i.e. 'scalar', 'image', 'text', 'embeddings', 'audio', 'histogram', 'hyper_parameters', 'static_graph', 'dynamic_graph', 'pr_curve', 'roc_curve', 'profiler', 'x2paddle', 'fastdeploy_server', 'fastdeploy_client'. If this parameter is set, only specified components will be presented. If not set, and specify --logdir parameter, only components with data in vdlrecords log are presented. If both --component_tabs and --logdir are not set, only present 'static_graph', 'x2paddle', 'fastdeploy_server', 'fastdeploy_client' components by default

To visualize the log file generated in the previous step, developers can launch the panel through the command:

from visualdl.server import app

app.run(logdir="./log")

After launching the panel by one of the above methods, developers can see the visualization results on the browser shown as blow:

3. Read data in log files using LogReader

VisualDL also provides LogReader interface to read any data from log files.

class LogReader(file_path='')

Interface Parameters

parameters type meaning
file_path string File path of the log file. Required.

Example

If there is a log file named vdlrecords.1605533348.log in the directory of ./log, we can retrieve the data under the 'loss' tag in the scalar by:

from visualdl import LogReader
reader = LogReader(file_path='./vdlrecords.1605533348.log')
data = reader.get_data('scalar', 'loss')
print(data)

The result will be a list shown as below:

...
id: 5
tag: "Metrics/Training(Step): loss"
timestamp: 1605533356039
value: 3.1297709941864014
...

For more information of LogReader, please refer to LogReader.

Function Preview

Scalar

Scalar makes use of various charts to display how the parameters, such as accuracy, loss and learning rate, changes during the training process. In this case, developers can observe not only the single but also the multiple groups of parameters in order to understand the training process and thus speed up the process of model tuning.

Dynamic Display

After the launch of VisualDL Board, the LogReader will continuously record the data to display in the front-end. Hence, the changes of parameters can be visualized in real-time, as shown below:

Comparison of Multiple Experiments

Developers can compare multiple experiments by specifying and uploading the path of each experiment at the same time so as to visualize the same parameters in the same chart.

Image

Image provides real-time visualizations of the image data during the training process, allowing developers to observe the changes of images at different training stages and to deeply understand the effects of the training process.

Audio

Audio aims to allow developers to listen to the audio data in real-time during the training process, helping developers to monitor the process of speech recognition and text-to-speech.

Text

Text visualizes the text output of NLP models within any stage, aiding developers to compare the changes of outputs so as to deeply understand the training process and simply evaluate the performance of the model.

Graph

Graph enables developers to visualize model structures by only one click. Moreover, Graph allows developers to explore model attributes, node information, node input and output. aiding them analyze model structures quickly and understand the direction of data flow easily. Additionally, Graph supports the visualization of dynamic and static model graph respectively.

  • dynamic graph

  • static graph

Histogram

Histogram displays how the trend of tensor (weight, bias, gradient, etc.) changes during the training process in the form of histogram. Developers can adjust the model structures accurately by having an in-depth understanding of the effect of each layer.

  • Offset Mode

  • Overlay Mode

PR Curve

PR Curve displays the precision and recall values under different thresholds, helping developers to find the best threshold efficiently.

ROC Curve

ROC Curve shows the performance of a classification model at all classification thresholds; the larger the area under the curve, the better the model performs, aiding developers in evaluating the model performance and choosing an appropriate threshold.

High Dimensional

High Dimensional provides three approaches--T-SNE, PCA and UMAP--to do the dimensionality reduction, allowing developers to have an in-depth analysis of the relationship between high-dimensional data and to optimize algorithms based on the analysis.

Hyper Parameters

Hyper Parameters visualize the relationship between hyperparameters and model metrics (such as accuracy and loss) in a rich view, helping you identify the best hyperparameters in an efficient way.

Performance Analysis

Performance Analysis(Profiler) visualize the profiling data collected during your program runs, helping you identify program bottlenecks and optimize performance. Please refer to VisualDL Profiler Guide

Performance Analysis

Performance Analysis(Profiler) visualize the profiling data collected during your program runs, helping you identify program bottlenecks and optimize performance. Please refer to VisualDL Profiler Guide.

X2Paddle

The X2Paddle component provides the functions of onnx model format visualization and transformation to paddle format.

FastDeployServer

The FastDeployServer component provides the functions of loading and editing the model repository, fastdeployserver service management and monitoring, and providing the client to test service. Please refer to use VisualDL for fastdeploy serving deployment visualization.

FastDeployClient

The FastDeployClient component is mainly used to quickly access the fastdeployserver service, to help users visualize prediction requests and results. Please refer to use VisualDL as fastdeploy client for request visualization.

VDL.service

VDL.service enables developers to easily save, track and share visualization results with anyone for free.

Frequently Asked Questions

If you are confronted with some problems when using VisualDL, please refer to our FAQs.

Contribution

VisualDL, in which Graph is powered by Netron, is an open source project supported by PaddlePaddle and ECharts.

Developers are warmly welcomed to use, comment and contribute.

More Details

For more details related to the use of VisualDL, please refer to VisualDL User Guide, VisualDL Profiler Guide, Use VisualDL for fastdeploy serving deployment visualization, Use VisualDL as fastdeploy client for request visualization.

Technical Communication

Welcome to join the official QQ group 1045783368 to communicate with PaddlePaddle team and other developers.

More Repositories

1

PaddleOCR

Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
43,170
star
2

Paddle

PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
C++
22,193
star
3

PaddleDetection

Object Detection toolkit based on PaddlePaddle. It supports object detection, instance segmentation, multiple object tracking and real-time multi-person keypoint detection.
Python
12,744
star
4

PaddleHub

Awesome pre-trained models toolkit based on PaddlePaddle. (400+ models including Image, Text, Audio, Video and Cross-Modal with Easy Inference & Serving)【安全加固,暂停交互,请耐心等待】
Python
12,704
star
5

PaddleNLP

👑 Easy-to-use and powerful NLP and LLM library with 🤗 Awesome model zoo, supporting wide-range of NLP tasks from research to industrial applications, including 🗂Text Classification, 🔍 Neural Search, ❓ Question Answering, ℹ️ Information Extraction, 📄 Document Intelligence, 💌 Sentiment Analysis etc.
Python
11,953
star
6

PaddleSpeech

Easy-to-use Speech Toolkit including Self-Supervised Learning model, SOTA/Streaming ASR with punctuation, Streaming TTS with text frontend, Speaker Verification System, End-to-End Speech Translation and Keyword Spotting. Won NAACL2022 Best Demo Award.
Python
11,053
star
7

PaddleSeg

Easy-to-use image segmentation library with awesome pre-trained model zoo, supporting wide-range of practical tasks in Semantic Segmentation, Interactive Segmentation, Panoptic Segmentation, Image Matting, 3D Segmentation, etc.
Python
8,601
star
8

PaddleGAN

PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, Wav2Lip, picture repair, image editing, photo2cartoon, image style transfer, GPEN, and so on.
Python
7,858
star
9

Paddle-Lite

PaddlePaddle High Performance Deep Learning Inference Engine for Mobile and Edge (飞桨高性能深度学习端侧推理引擎)
C++
6,953
star
10

models

Officially maintained, supported by PaddlePaddle, including CV, NLP, Speech, Rec, TS, big models and so on.
Python
6,897
star
11

ERNIE

Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.
Python
6,300
star
12

PaddleClas

A treasure chest for visual classification and recognition powered by PaddlePaddle
Python
5,418
star
13

PaddleX

All-in-One Development Tool based on PaddlePaddle(飞桨低代码全流程开发工具)
Python
4,781
star
14

PaddleRec

Recommendation Algorithm大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、Bert4Rec、DeepWalk、SSR、AITM,DSIN,SIGN,IPREC、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、ESCMM, MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、DMR、GateNet、NAML、DIFM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、Fibinet、ListWise、DeepRec、ENSFM,TiSAS,AutoFIS等,包含经典推荐系统数据集criteo 、movielens等
Python
4,273
star
15

PARL

A high-performance distributed training framework for Reinforcement Learning
Python
3,261
star
16

awesome-DeepLearning

深度学习入门课、资深课、特色课、学术案例、产业实践案例、深度学习知识百科及面试题库The course, case and knowledge of Deep Learning and AI
Jupyter Notebook
3,001
star
17

FastDeploy

⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end optimization, multi-platform and multi-framework support.
C++
2,952
star
18

book

Deep Learning 101 with PaddlePaddle (『飞桨』深度学习框架入门教程)
Jupyter Notebook
2,735
star
19

Research

novel deep learning research works with PaddlePaddle
Python
1,715
star
20

PGL

Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle
Python
1,572
star
21

PaddleSlim

PaddleSlim is an open-source library for deep model compression and architecture search.
Python
1,557
star
22

PaddleVideo

Awesome video understanding toolkits based on PaddlePaddle. It supports video data annotation tools, lightweight RGB and skeleton based action recognition model, practical applications for video tagging and sport action detection.
Python
1,512
star
23

PaddleHelix

Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集
Python
1,007
star
24

Paddle.js

Paddle.js is a web project for Baidu PaddlePaddle, which is an open source deep learning framework running in the browser. Paddle.js can either load a pre-trained model, or transforming a model from paddle-hub with model transforming tools provided by Paddle.js. It could run in every browser with WebGL/WebGPU/WebAssembly supported. It could also run in Baidu Smartprogram and WX miniprogram.
JavaScript
980
star
25

Serving

A flexible, high-performance carrier for machine learning models(『飞桨』服务化部署框架)
C++
894
star
26

RocketQA

🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.
Python
763
star
27

X2Paddle

Deep learning model converter for PaddlePaddle. (『飞桨』深度学习模型转换工具)
Python
727
star
28

Paddle2ONNX

ONNX Model Exporter for PaddlePaddle
Python
723
star
29

Paddle-Lite-Demo

lib, demo, model, data
C++
675
star
30

Knover

Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle
Python
674
star
31

Parakeet

PAddle PARAllel text-to-speech toolKIT (supporting Tacotron2, Transformer TTS, FastSpeech2/FastPitch, SpeedySpeech, WaveFlow and Parallel WaveGAN)
Python
600
star
32

FlyCV

FlyCV is a high-performance library for processing computer visual tasks.
C++
577
star
33

Paddle3D

A 3D computer vision development toolkit based on PaddlePaddle. It supports point-cloud object detection, segmentation, and monocular 3D object detection models.
Python
565
star
34

Quantum

Jupyter Notebook
564
star
35

PaddleYOLO

🚀🚀🚀 YOLO series of PaddlePaddle implementation, PP-YOLOE+, RT-DETR, YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOv10, YOLOX, YOLOv5u, YOLOv7u, YOLOv6Lite, RTMDet and so on. 🚀🚀🚀
Python
551
star
36

Anakin

High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.
C++
531
star
37

VIMER

视觉预训练基础模型仓库
Python
494
star
38

PaddleTS

Awesome Easy-to-Use Deep Time Series Modeling based on PaddlePaddle, including comprehensive functionality modules like TSDataset, Analysis, Transform, Models, AutoTS, and Ensemble, etc., supporting versatile tasks like time series forecasting, representation learning, and anomaly detection, etc., featured with quick tracking of SOTA deep models.
Python
481
star
39

PaddleFL

Federated Deep Learning in PaddlePaddle
Python
480
star
40

PaddleFleetX

飞桨大模型开发套件,提供大语言模型、跨模态大模型、生物计算大模型等领域的全流程开发工具链。
Python
436
star
41

ERNIE-SDK

ERNIE Bot Agent is a Large Language Model (LLM) Agent Framework, powered by the advanced capabilities of ERNIE Bot and the platform resources of Baidu AI Studio.
Jupyter Notebook
341
star
42

PaddleSpatial

PaddleSpatial is an open-source spatial-temporal computing tool based on PaddlePaddle.
GLSL
331
star
43

PaddleRS

Awesome Remote Sensing Toolkit based on PaddlePaddle.
Python
330
star
44

PaddleMIX

Paddle Multimodal Integration and eXploration, supporting mainstream multi-modal tasks, including end-to-end large-scale multi-modal pretrain models and diffusion model toolbox. Equipped with high performance and flexibility.
Python
308
star
45

PaddleCloud

PaddlePaddle Docker images and K8s operators for PaddleOCR/Detection developers to use on public/private cloud.
Go
284
star
46

MetaGym

Collection of Reinforcement Learning / Meta Reinforcement Learning Environments.
Python
276
star
47

PASSL

PASSL包含 SimCLR,MoCo v1/v2,BYOL,CLIP,PixPro,simsiam, SwAV, BEiT,MAE 等图像自监督算法以及 Vision Transformer,DEiT,Swin Transformer,CvT,T2T-ViT,MLP-Mixer,XCiT,ConvNeXt,PVTv2 等基础视觉算法
Python
273
star
48

PaddleScience

PaddleScience is SDK and library for developing AI-driven scientific computing applications based on PaddlePaddle.
Python
259
star
49

InterpretDL

InterpretDL: Interpretation of Deep Learning Models,基于『飞桨』的模型可解释性算法库。
Python
241
star
50

docs

Documentations for PaddlePaddle
Python
240
star
51

Paddle-Inference-Demo

C++
235
star
52

PaddleRobotics

PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.
Python
215
star
53

TrustAI

飞桨可信AI
Python
182
star
54

PALM

a Fast, Flexible, Extensible and Easy-to-use NLP Large-scale Pretraining and Multi-task Learning Framework.
Python
176
star
55

ElasticCTR

ElasticCTR,即飞桨弹性计算推荐系统,是基于Kubernetes的企业级推荐系统开源解决方案。该方案融合了百度业务场景下持续打磨的高精度CTR模型、飞桨开源框架的大规模分布式训练能力、工业级稀疏参数弹性调度服务,帮助用户在Kubernetes环境中一键完成推荐系统部署,具备高性能、工业级部署、端到端体验的特点,并且作为开源套件,满足二次深度开发的需求。
Python
176
star
56

AutoDL

Python
158
star
57

PLSC

Paddle Large Scale Classification Tools,supports ArcFace, CosFace, PartialFC, Data Parallel + Model Parallel. Model includes ResNet, ViT, Swin, DeiT, CaiT, FaceViT, MoCo, MAE, ConvMAE, CAE.
Python
148
star
58

CINN

Compiler Infrastructure for Neural Networks
C++
142
star
59

LiteKit

Off-The-Shelf AI Development Kit for APP Developers based on Paddle Lite (『飞桨』移动端开箱即用AI套件, 包含Java & Objective C接口支持)
Objective-C
134
star
60

PaddleFlow

Go
113
star
61

PaddleSports

Python
101
star
62

PaddleDTX

Paddle with Decentralized Trust based on Xuperchain
Go
89
star
63

PaConvert

PaddlePaddle Code Convert Toolkit. 『飞桨』深度学习代码转换工具
Python
87
star
64

XWorld

A C++/Python simulator package for reinforcement learning
C++
85
star
65

community

PaddlePaddle Developer Community
Jupyter Notebook
83
star
66

PaddleSleeve

PaddleSleeve
Python
76
star
67

benchmark

Python
76
star
68

hapi

hapi is a High-level API that supports both static and dynamic execution modes
Jupyter Notebook
76
star
69

Mobile

Embedded and Mobile Deployment
Python
71
star
70

PaddleCustomDevice

PaddlePaddle custom device implementaion. (『飞桨』自定义硬件接入实现)
Python
68
star
71

PaddleDepth

Python
63
star
72

PaddlePaddle.org

PaddlePaddle.org is the repository for the website of the PaddlePaddle open source project.
CSS
48
star
73

PaDiff

Paddle Automatically Diff Precision Toolkits.
Python
46
star
74

EasyData

Python
46
star
75

PaddleTest

PaddlePaddle TestSuite
Python
44
star
76

epep

Easy & Effective Application Framework for PaddlePaddle
Python
34
star
77

paddle-ce-latest-kpis

Paddle Continuous Evaluation, keep updating.
Python
26
star
78

VisionTools

Python
21
star
79

PaddleCraft

Take neural networks as APIs for human-like AI.
Python
20
star
80

Contrib

contribution works with PaddlePaddle from the third party developers
Python
20
star
81

PaddleTransfer

飞桨迁移学习算法库
Python
19
star
82

continuous_evaluation

Macro Continuous Evaluation Platform for Paddle.
Python
19
star
83

recordio

An implementation of the RecordIO file format.
Go
19
star
84

Perf

SOTA benchmark
Python
17
star
85

Paddle-bot

Python
17
star
86

examples

Python
17
star
87

continuous_integration

Python
16
star
88

PaddleSOT

A Bytecode level Implementation of Symbolic OpCode Translator For PaddlePaddle
Python
15
star
89

tape

C++
14
star
90

paddle_upgrade_tool

upgrade paddle-1.x to paddle-2.0
Python
12
star
91

PaddleAPEX

PaddleAPEX:Paddle Accuracy and Performance EXpansion pack
Python
7
star
92

talks

Shell
6
star
93

CLA

5
star
94

any

Legacy Repo only for PaddlePaddle with version <= 1.3
C++
5
star