• Stars
    star
    6,300
  • Rank 6,330 (Top 0.2 %)
  • Language
    Python
  • Created over 5 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.

ERNIE_milestone_20210519_zh

文心大模型ERNIE是百度发布的产业级知识增强大模型,涵盖了NLP大模型和跨模态大模型。2019年3月,开源了国内首个开源预训练模型文心ERNIE 1.0,此后在语言与跨模态的理解和生成等领域取得一系列技术突破,并对外开源与开放了系列模型,助力大模型研究与产业化应用发展。提醒: ERNIE老版本代码已经迁移至repro分支,欢迎使用我们全新升级的基于动静结合的新版ERNIE套件进行开发。另外,也欢迎上EasyDLBML体验更丰富的功能。 【了解更多】

开源Roadmap

  • 2022.8.18:
    • 图文跨模态预训练模型ERNIE-ViL 2.0 (base) 正式开源
  • 2022.5.20:
    • 最新开源ERNIE 3.0系列预训练模型:
      • 110M参数通用模型ERNIE 3.0 Base
      • 280M参数重量级通用模型ERNIE 3.0 XBase
      • 74M轻量级通用模型ERNIE 3.0 Medium
    • 新增语音-语言跨模态模型ERNIE-SAT 正式开源
    • 新增ERNIE-Gen(中文)预训练模型,支持多类主流生成任务:主要包括摘要、问题生成、对话、问答
    • 动静结合的文心ERNIE开发套件:基于飞桨动态图功能,支持文心ERNIE模型动态图训练。您仅需要在模型训练开启前,修改一个参数配置,即可实现模型训练的动静切换。
    • 将文本预处理、预训练模型、网络搭建、模型评估、上线部署等NLP开发流程规范封装。
    • 支持NLP常用任务:文本分类、文本匹配、序列标注、信息抽取、文本生成、数据蒸馏等。
    • 提供数据清洗、数据增强、分词、格式转换、大小写转换等数据预处理工具。
  • 2021.12.3:
  • 2021.5.20:
    • ERNIE 最新开源四大预训练模型:
      • 多粒度语言知识模型ERNIE-Gram 正式开源
      • 超长文本双向建模预训练模型ERNIE-Doc 正式开源
      • 融合场景图知识的跨模态预训练模型教程ERNIE-ViL 正式开源
      • 语言与视觉一体的预训练模型ERNIE-UNIMO 正式开源
  • 2020.9.24:
    • ERNIE-ViL 技术发布! (点击进入)
      • 面向视觉-语言知识增强的预训练框架,首次在视觉-语言预训练引入结构化的知识。
        • 利用场景图中的知识,构建了物体、属性和关系预测任务,精细刻画模态间细粒度语义对齐。
      • 五项视觉-语言下游任务取得最好效果,视觉常识推理榜单取得第一。
  • 2020.5.20:
    • ERNIE-GEN 模型正式开源! (点击进入)
      • 最强文本生成预训练模型正式开源,相关工作已被 IJCAI-2020 收录。
        • 首次把 ERNIE 预训练技术能力扩展至文本生成领域,在多个典型任务上取得最佳。
        • 您现在即可下载论文报告的所有模型(包含 base/large/large-430G)。
      • 首次在预训练阶段加入span-by-span 生成任务,让模型每次能够生成一个语义完整的片段。
      • 提出填充式生成机制和噪声感知机制来缓解曝光偏差问题。
      • 精巧的 Mulit-Flow Attention 实现框架。
  • 2020.4.30 发布ERNIESage, 一种新型图神经网络模型,采用ERNIE做为aggreagtor. 由PGL实现。
  • 2020.3.27 在SemEval2020五项子任务上夺冠
  • 2019.12.26 GLUE榜第一名
  • 2019.11.6 发布ERNIE Tiny
  • 2019.7.7 发布ERNIE 2.0
  • 2019.3.16 发布ERNIE 1.0

环境安装

  1. 安装环境依赖:环境安装
  2. 安装Ernie套件
git clone https://github.com/PaddlePaddle/ERNIE.git

快速上手:使用文心ERNIE大模型进行训练

  • 使用ERNIE3.0作为预训练模型,准备工作包括:
    • 下载模型
    • 准备数据
    • 配置训练json文件
    • 启动训练模型
    • 配置预测json文件
    • 启动预测
  • 我们以文本分类任务为例,来快速上手ERNIE大模型的使用

下载模型

  • 使用ERNIE3.0预训练模型进行文本分类任务
  • ERNNIE3.0预训练模型的下载与配置
# ernie_3.0 模型下载
# 进入models_hub目录
cd ./applications/models_hub
# 运行下载脚本
sh download_ernie_3.0_base_ch.sh

准备数据

  • 文心各个任务的data目录下自带一些示例数据,能够实现直接使用,方便快速熟悉文心的使用。
  • 文本分类任务的数据
#进入文本分类任务文件夹
cd ./applications/tasks/text_classification/
#查看文本分类任务自带数据集
ls ./data
  • 注:示例数据仅作为格式演示使用,在真正训练模型时请替换为真实数据。

配置训练json文件

  • 其预置json文件在./examples/目录下,使用ERNIE3.0预训练模型进行训练的配置文件为的./examples/cls_ernie_fc_ch.json,在该json文件中对数据、模型、训练方式等逻辑进行了配置。
#查看 ERNIE3.0预训练模型 训练文本分类任务的配置文件
cat ./examples/cls_ernie_fc_ch.json

启动训练

  • 将数据集存放妥当,并配置好cls_ernie_fc_ch.json,我们就可以运行模型训练的命令。
  • 其中,单卡指令为python run_trainer.py,如下所示,使用基于ernie的中文文本分类模型在训练集上进行本地模型训练。
# ernie 中文文本分类模型
# 基于json实现预置网络训练。其调用了配置文件./examples/cls_ernie_fc_ch.json
python run_trainer.py --param_path ./examples/cls_ernie_fc_ch.json
  • 多卡指令为:
fleetrun --gpus=x,y run_trainer.py./examples/cls_ernie_fc_ch.json
  • 训练运行的日志会自动保存在**./log/test.log**文件中。
  • 训练中以及结束后产生的模型文件会默认保存在./output/目录下,其中save_inference_model/文件夹会保存用于预测的模型文件,save_checkpoint/ 文件夹会保存用于热启动的模型文件。

配置预测json文件

  • 其预置json文件在./examples/目录下,使用ERNIE2.0预训练模型训练的模型进行预测的配置文件为的./examples/cls_ernie_fc_ch_infer.json
  • 主要修改./examples/cls_ernie_fc_ch_infer.json文件的预测模型的输入路径、预测文件的输入路径、预测结果的输出路径,对应修改配置如下:
{
"dataset_reader":{"train_reader":{"config":{"data_path":"./data/predict_data"}}},
"inference":{"inference_model_path":"./output/cls_ernie_fc_ch/save_inference_model/inference_step_251",
                        "output_path": "./output/predict_result.txt"}
}

启动预测

  • 运行run_infer.py ,选择对应的参数配置文件即可。如下所示:
python run_infer.py --param_path ./examples/cls_ernie_fc_ch_infer.json
  • 预测过程中的日志自动保存在./output/predict_result.txt文件中。

预训练模型介绍

  • 参考预训练模型原理介绍:模型介绍
  • 预训练模型下载:进入./applications/models_hub目录下,下载示例:
#进入预训练模型下载目录
cd ./applications/models_hub
#下载ERNIE3.0 base模型
sh downlaod_ernie_3.0_base_ch.sh

数据集下载

CLUE数据集

DuIE2.0数据集

MSRA_NER数据集

模型效果评估

评估数据集

CLUE 评测结果:

配置 模型 CLUEWSC2020 IFLYTEK TNEWS AFQMC CMNLI CSL OCNLI 平均值
24L1024H RoBERTa-wwm-ext-large 90.79 62.02 59.33 76.00 83.88 83.67 78.81 76.36
20L1024H ERNIE 3.0-XBase 91.12 62.22 60.34 76.95 84.98 84.27 82.07 77.42
12L768H RoBERTa-wwm-ext-base 88.55 61.22 58.08 74.75 81.66 81.63 77.25 74.73
12L768H ERNIE 3.0-Base 88.18 60.72 58.73 76.53 83.65 83.30 80.31 75.63
6L768H RBT6, Chinese 75.00 59.68 56.62 73.15 79.26 80.04 73.15 70.99
6L768H ERNIE 3.0-Medium 79.93 60.14 57.16 74.56 80.87 81.23 77.02 72.99

具体评测方式

  1. 以上所有任务均基于 Grid Search 方式进行超参寻优。分类任务训练每间隔 100 steps 评估验证集效果,取验证集最优效果作为表格中的汇报指标。
  2. 分类任务 Grid Search 超参范围: batch_size: 16, 32, 64; learning rates: 1e-5, 2e-5, 3e-5, 5e-5;因为 CLUEWSC2020 数据集较小,所以模型在该数据集上的效果对 batch_size 较敏感,所以对 CLUEWSC2020 评测时额外增加了 batch_size = 8 的超参搜索; 因为CLUEWSC2020 和 IFLYTEK 数据集对 dropout 概率值较为敏感,所以对 CLUEWSC2020 和 IFLYTEK 数据集评测时增加dropout_prob = 0.0 的超参搜索。

下游任务的固定超参配置

分类和匹配任务:

TASK AFQMC TNEWS IFLYTEK CMNLI OCNLI CLUEWSC2020 CSL
epoch 3 3 3 2 5 50 5
max_seq_length 128 128 128 128 128 128 256
warmup_proportion 0.1 0.1 0.1 0.1 0.1 0.1 0.1

ERNIE模型Grid Search 最优超参

Model AFQMC TNEWS IFLYTEK CMNLI OCNLI CLUEWSC2020 CSL
ERNIE 3.0-Medium bsz_32_lr_2e-05 bsz_16_lr_3e-05 bsz_16_lr_5e-05 bsz_16_lr_1e-05/bsz_64_lr_2e-05 bsz_64_lr_2e-05 bsz_8_lr_2e-05 bsz_32_lr_1e-05
ERNIE 3.0-Base bsz_16_lr_2e-05 bsz_64_lr_3e-05 bsz_16_lr_5e-05 bsz_16_lr_2e-05 bsz_16_lr_2e-05 bsz_8_lr_2e-05(drop_out _0.1) bsz_16_lr_3e-05
ERNIE 3.0-XBase bsz_16_lr_1e-05 bsz_16_lr_2e-05 bsz_16_lr_3e-05 bsz_16_lr_1e-05 bsz_32_lr_2e-05 bsz_8_lr_2e-05 bsz_64_lr_1e-05

应用场景

文本分类(文本分类

文本匹配(文本匹配

序列标注(序列标注

信息抽取(信息抽取

文本生成(文本生成

图文匹配(图文匹配

数据蒸馏(数据蒸馏

工具使用(工具使用

文献引用

ERNIE 1.0

@article{sun2019ernie,
  title={Ernie: Enhanced representation through knowledge integration},
  author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Chen, Xuyi and Zhang, Han and Tian, Xin and Zhu, Danxiang and Tian, Hao and Wu, Hua},
  journal={arXiv preprint arXiv:1904.09223},
  year={2019}
}

ERNIE 2.0

@inproceedings{sun2020ernie,
  title={Ernie 2.0: A continual pre-training framework for language understanding},
  author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={34},
  number={05},
  pages={8968--8975},
  year={2020}
}

ERNIE-GEN

@article{xiao2020ernie,
  title={Ernie-gen: An enhanced multi-flow pre-training and fine-tuning framework for natural language generation},
  author={Xiao, Dongling and Zhang, Han and Li, Yukun and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
  journal={arXiv preprint arXiv:2001.11314},
  year={2020}
}

ERNIE-ViL

@article{yu2020ernie,
  title={Ernie-vil: Knowledge enhanced vision-language representations through scene graph},
  author={Yu, Fei and Tang, Jiji and Yin, Weichong and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
  journal={arXiv preprint arXiv:2006.16934},
  year={2020}
}

ERNIE-Gram

@article{xiao2020ernie,
  title={ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding},
  author={Xiao, Dongling and Li, Yu-Kun and Zhang, Han and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
  journal={arXiv preprint arXiv:2010.12148},
  year={2020}
}

ERNIE-Doc

@article{ding2020ernie,
  title={ERNIE-Doc: A retrospective long-document modeling transformer},
  author={Ding, Siyu and Shang, Junyuan and Wang, Shuohuan and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
  journal={arXiv preprint arXiv:2012.15688},
  year={2020}
}

ERNIE-UNIMO

@article{li2020unimo,
  title={Unimo: Towards unified-modal understanding and generation via cross-modal contrastive learning},
  author={Li, Wei and Gao, Can and Niu, Guocheng and Xiao, Xinyan and Liu, Hao and Liu, Jiachen and Wu, Hua and Wang, Haifeng},
  journal={arXiv preprint arXiv:2012.15409},
  year={2020}
}

ERNIE-M

@article{ouyang2020ernie,
  title={Ernie-m: Enhanced multilingual representation by aligning cross-lingual semantics with monolingual corpora},
  author={Ouyang, Xuan and Wang, Shuohuan and Pang, Chao and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
  journal={arXiv preprint arXiv:2012.15674},
  year={2020}
}

More Repositories

1

PaddleOCR

Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
43,170
star
2

Paddle

PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
C++
22,193
star
3

PaddleDetection

Object Detection toolkit based on PaddlePaddle. It supports object detection, instance segmentation, multiple object tracking and real-time multi-person keypoint detection.
Python
12,744
star
4

PaddleHub

Awesome pre-trained models toolkit based on PaddlePaddle. (400+ models including Image, Text, Audio, Video and Cross-Modal with Easy Inference & Serving)【安全加固,暂停交互,请耐心等待】
Python
12,704
star
5

PaddleNLP

👑 Easy-to-use and powerful NLP and LLM library with 🤗 Awesome model zoo, supporting wide-range of NLP tasks from research to industrial applications, including 🗂Text Classification, 🔍 Neural Search, ❓ Question Answering, ℹ️ Information Extraction, 📄 Document Intelligence, 💌 Sentiment Analysis etc.
Python
11,953
star
6

PaddleSpeech

Easy-to-use Speech Toolkit including Self-Supervised Learning model, SOTA/Streaming ASR with punctuation, Streaming TTS with text frontend, Speaker Verification System, End-to-End Speech Translation and Keyword Spotting. Won NAACL2022 Best Demo Award.
Python
11,053
star
7

PaddleSeg

Easy-to-use image segmentation library with awesome pre-trained model zoo, supporting wide-range of practical tasks in Semantic Segmentation, Interactive Segmentation, Panoptic Segmentation, Image Matting, 3D Segmentation, etc.
Python
8,601
star
8

PaddleGAN

PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, Wav2Lip, picture repair, image editing, photo2cartoon, image style transfer, GPEN, and so on.
Python
7,858
star
9

Paddle-Lite

PaddlePaddle High Performance Deep Learning Inference Engine for Mobile and Edge (飞桨高性能深度学习端侧推理引擎)
C++
6,953
star
10

models

Officially maintained, supported by PaddlePaddle, including CV, NLP, Speech, Rec, TS, big models and so on.
Python
6,897
star
11

PaddleClas

A treasure chest for visual classification and recognition powered by PaddlePaddle
Python
5,418
star
12

PaddleX

All-in-One Development Tool based on PaddlePaddle(飞桨低代码全流程开发工具)
Python
4,781
star
13

VisualDL

Deep Learning Visualization Toolkit(『飞桨』深度学习可视化工具 )
HTML
4,773
star
14

PaddleRec

Recommendation Algorithm大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、Bert4Rec、DeepWalk、SSR、AITM,DSIN,SIGN,IPREC、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、ESCMM, MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、DMR、GateNet、NAML、DIFM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、Fibinet、ListWise、DeepRec、ENSFM,TiSAS,AutoFIS等,包含经典推荐系统数据集criteo 、movielens等
Python
4,273
star
15

PARL

A high-performance distributed training framework for Reinforcement Learning
Python
3,261
star
16

awesome-DeepLearning

深度学习入门课、资深课、特色课、学术案例、产业实践案例、深度学习知识百科及面试题库The course, case and knowledge of Deep Learning and AI
Jupyter Notebook
3,001
star
17

FastDeploy

⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end optimization, multi-platform and multi-framework support.
C++
2,952
star
18

book

Deep Learning 101 with PaddlePaddle (『飞桨』深度学习框架入门教程)
Jupyter Notebook
2,735
star
19

Research

novel deep learning research works with PaddlePaddle
Python
1,715
star
20

PGL

Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle
Python
1,572
star
21

PaddleSlim

PaddleSlim is an open-source library for deep model compression and architecture search.
Python
1,557
star
22

PaddleVideo

Awesome video understanding toolkits based on PaddlePaddle. It supports video data annotation tools, lightweight RGB and skeleton based action recognition model, practical applications for video tagging and sport action detection.
Python
1,512
star
23

PaddleHelix

Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集
Python
1,007
star
24

Paddle.js

Paddle.js is a web project for Baidu PaddlePaddle, which is an open source deep learning framework running in the browser. Paddle.js can either load a pre-trained model, or transforming a model from paddle-hub with model transforming tools provided by Paddle.js. It could run in every browser with WebGL/WebGPU/WebAssembly supported. It could also run in Baidu Smartprogram and WX miniprogram.
JavaScript
980
star
25

Serving

A flexible, high-performance carrier for machine learning models(『飞桨』服务化部署框架)
C++
894
star
26

RocketQA

🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.
Python
763
star
27

X2Paddle

Deep learning model converter for PaddlePaddle. (『飞桨』深度学习模型转换工具)
Python
727
star
28

Paddle2ONNX

ONNX Model Exporter for PaddlePaddle
Python
723
star
29

Paddle-Lite-Demo

lib, demo, model, data
C++
675
star
30

Knover

Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle
Python
674
star
31

Parakeet

PAddle PARAllel text-to-speech toolKIT (supporting Tacotron2, Transformer TTS, FastSpeech2/FastPitch, SpeedySpeech, WaveFlow and Parallel WaveGAN)
Python
600
star
32

FlyCV

FlyCV is a high-performance library for processing computer visual tasks.
C++
577
star
33

Paddle3D

A 3D computer vision development toolkit based on PaddlePaddle. It supports point-cloud object detection, segmentation, and monocular 3D object detection models.
Python
565
star
34

Quantum

Jupyter Notebook
564
star
35

PaddleYOLO

🚀🚀🚀 YOLO series of PaddlePaddle implementation, PP-YOLOE+, RT-DETR, YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOv10, YOLOX, YOLOv5u, YOLOv7u, YOLOv6Lite, RTMDet and so on. 🚀🚀🚀
Python
551
star
36

Anakin

High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.
C++
531
star
37

VIMER

视觉预训练基础模型仓库
Python
494
star
38

PaddleTS

Awesome Easy-to-Use Deep Time Series Modeling based on PaddlePaddle, including comprehensive functionality modules like TSDataset, Analysis, Transform, Models, AutoTS, and Ensemble, etc., supporting versatile tasks like time series forecasting, representation learning, and anomaly detection, etc., featured with quick tracking of SOTA deep models.
Python
481
star
39

PaddleFL

Federated Deep Learning in PaddlePaddle
Python
480
star
40

PaddleFleetX

飞桨大模型开发套件,提供大语言模型、跨模态大模型、生物计算大模型等领域的全流程开发工具链。
Python
436
star
41

ERNIE-SDK

ERNIE Bot Agent is a Large Language Model (LLM) Agent Framework, powered by the advanced capabilities of ERNIE Bot and the platform resources of Baidu AI Studio.
Jupyter Notebook
341
star
42

PaddleSpatial

PaddleSpatial is an open-source spatial-temporal computing tool based on PaddlePaddle.
GLSL
331
star
43

PaddleRS

Awesome Remote Sensing Toolkit based on PaddlePaddle.
Python
330
star
44

PaddleMIX

Paddle Multimodal Integration and eXploration, supporting mainstream multi-modal tasks, including end-to-end large-scale multi-modal pretrain models and diffusion model toolbox. Equipped with high performance and flexibility.
Python
308
star
45

PaddleCloud

PaddlePaddle Docker images and K8s operators for PaddleOCR/Detection developers to use on public/private cloud.
Go
284
star
46

MetaGym

Collection of Reinforcement Learning / Meta Reinforcement Learning Environments.
Python
276
star
47

PASSL

PASSL包含 SimCLR,MoCo v1/v2,BYOL,CLIP,PixPro,simsiam, SwAV, BEiT,MAE 等图像自监督算法以及 Vision Transformer,DEiT,Swin Transformer,CvT,T2T-ViT,MLP-Mixer,XCiT,ConvNeXt,PVTv2 等基础视觉算法
Python
273
star
48

PaddleScience

PaddleScience is SDK and library for developing AI-driven scientific computing applications based on PaddlePaddle.
Python
259
star
49

InterpretDL

InterpretDL: Interpretation of Deep Learning Models,基于『飞桨』的模型可解释性算法库。
Python
241
star
50

docs

Documentations for PaddlePaddle
Python
240
star
51

Paddle-Inference-Demo

C++
235
star
52

PaddleRobotics

PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.
Python
215
star
53

TrustAI

飞桨可信AI
Python
182
star
54

PALM

a Fast, Flexible, Extensible and Easy-to-use NLP Large-scale Pretraining and Multi-task Learning Framework.
Python
176
star
55

ElasticCTR

ElasticCTR,即飞桨弹性计算推荐系统,是基于Kubernetes的企业级推荐系统开源解决方案。该方案融合了百度业务场景下持续打磨的高精度CTR模型、飞桨开源框架的大规模分布式训练能力、工业级稀疏参数弹性调度服务,帮助用户在Kubernetes环境中一键完成推荐系统部署,具备高性能、工业级部署、端到端体验的特点,并且作为开源套件,满足二次深度开发的需求。
Python
176
star
56

AutoDL

Python
158
star
57

PLSC

Paddle Large Scale Classification Tools,supports ArcFace, CosFace, PartialFC, Data Parallel + Model Parallel. Model includes ResNet, ViT, Swin, DeiT, CaiT, FaceViT, MoCo, MAE, ConvMAE, CAE.
Python
148
star
58

CINN

Compiler Infrastructure for Neural Networks
C++
142
star
59

LiteKit

Off-The-Shelf AI Development Kit for APP Developers based on Paddle Lite (『飞桨』移动端开箱即用AI套件, 包含Java & Objective C接口支持)
Objective-C
134
star
60

PaddleFlow

Go
113
star
61

PaddleSports

Python
101
star
62

PaddleDTX

Paddle with Decentralized Trust based on Xuperchain
Go
89
star
63

PaConvert

PaddlePaddle Code Convert Toolkit. 『飞桨』深度学习代码转换工具
Python
87
star
64

XWorld

A C++/Python simulator package for reinforcement learning
C++
85
star
65

community

PaddlePaddle Developer Community
Jupyter Notebook
83
star
66

PaddleSleeve

PaddleSleeve
Python
76
star
67

benchmark

Python
76
star
68

hapi

hapi is a High-level API that supports both static and dynamic execution modes
Jupyter Notebook
76
star
69

Mobile

Embedded and Mobile Deployment
Python
71
star
70

PaddleCustomDevice

PaddlePaddle custom device implementaion. (『飞桨』自定义硬件接入实现)
Python
68
star
71

PaddleDepth

Python
63
star
72

PaddlePaddle.org

PaddlePaddle.org is the repository for the website of the PaddlePaddle open source project.
CSS
48
star
73

PaDiff

Paddle Automatically Diff Precision Toolkits.
Python
46
star
74

EasyData

Python
46
star
75

PaddleTest

PaddlePaddle TestSuite
Python
44
star
76

epep

Easy & Effective Application Framework for PaddlePaddle
Python
34
star
77

paddle-ce-latest-kpis

Paddle Continuous Evaluation, keep updating.
Python
26
star
78

VisionTools

Python
21
star
79

PaddleCraft

Take neural networks as APIs for human-like AI.
Python
20
star
80

Contrib

contribution works with PaddlePaddle from the third party developers
Python
20
star
81

PaddleTransfer

飞桨迁移学习算法库
Python
19
star
82

continuous_evaluation

Macro Continuous Evaluation Platform for Paddle.
Python
19
star
83

recordio

An implementation of the RecordIO file format.
Go
19
star
84

Perf

SOTA benchmark
Python
17
star
85

Paddle-bot

Python
17
star
86

examples

Python
17
star
87

continuous_integration

Python
16
star
88

PaddleSOT

A Bytecode level Implementation of Symbolic OpCode Translator For PaddlePaddle
Python
15
star
89

tape

C++
14
star
90

paddle_upgrade_tool

upgrade paddle-1.x to paddle-2.0
Python
12
star
91

PaddleAPEX

PaddleAPEX:Paddle Accuracy and Performance EXpansion pack
Python
7
star
92

talks

Shell
6
star
93

CLA

5
star
94

any

Legacy Repo only for PaddlePaddle with version <= 1.3
C++
5
star