内容理解 |
TextCnn(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[EMNLP 2014]Convolutional neural networks for sentence classication |
内容理解 |
TagSpace(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[EMNLP 2014]TagSpace: Semantic Embeddings from Hashtags |
匹配 |
DSSM(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[CIKM 2013]Learning Deep Structured Semantic Models for Web Search using Clickthrough Data |
匹配 |
Match-Pyramid(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[AAAI 2016]Text Matching as Image Recognition |
匹配 |
MultiView-Simnet(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[WWW 2015]A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems |
匹配 |
KIM(文档) |
- |
x |
x |
>=2.1.0 |
[SIGIR 2021]Personalized News Recommendation with Knowledge-aware Interactive Matching |
召回 |
TDM |
- |
✓ |
>=1.8.0 |
1.8.5 |
[KDD 2018]Learning Tree-based Deep Model for Recommender Systems |
召回 |
FastText |
- |
x |
x |
1.8.5 |
[EACL 2017]Bag of Tricks for Efficient Text Classification |
召回 |
MIND(文档) |
Python CPU/GPU |
x |
x |
>=2.1.0 |
[2019]Multi-Interest Network with Dynamic Routing for Recommendation at Tmall |
召回 |
Word2Vec(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[NIPS 2013]Distributed Representations of Words and Phrases and their Compositionality |
召回 |
DeepWalk(文档) |
Python CPU/GPU |
x |
x |
>=2.1.0 |
[SIGKDD 2014]DeepWalk: Online Learning of Social Representations |
召回 |
SSR |
- |
✓ |
✓ |
1.8.5 |
[SIGIR 2016]Multtti-Rate Deep Learning for Temporal Recommendation |
召回 |
Gru4Rec(文档) |
- |
✓ |
✓ |
1.8.5 |
[2015]Session-based Recommendations with Recurrent Neural Networks |
召回 |
Youtube_dnn |
- |
✓ |
✓ |
1.8.5 |
[RecSys 2016]Deep Neural Networks for YouTube Recommendations |
召回 |
NCF(文档) |
Python CPU/GPU |
✓ |
✓ |
>=2.1.0 |
[WWW 2017]Neural Collaborative Filtering |
召回 |
TiSAS |
- |
✓ |
✓ |
>=2.1.0 |
[WSDM 2020]Time Interval Aware Self-Attention for Sequential Recommendation |
召回 |
ENSFM |
- |
✓ |
✓ |
>=2.1.0 |
[IW3C2 2020]Eicient Non-Sampling Factorization Machines for Optimal Context-Aware Recommendation |
召回 |
MHCN |
- |
✓ |
✓ |
>=2.1.0 |
[WWW 2021]Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation |
召回 |
GNN |
- |
✓ |
✓ |
1.8.5 |
[AAAI 2019]Session-based Recommendation with Graph Neural Networks |
召回 |
RALM |
- |
✓ |
✓ |
1.8.5 |
[KDD 2019]Real-time Attention Based Look-alike Model for Recommender System |
排序 |
Logistic Regression(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
/ |
排序 |
Dnn(文档) |
Python CPU/GPU |
✓ |
✓ |
>=2.1.0 |
/ |
排序 |
FM(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[IEEE Data Mining 2010]Factorization machines |
排序 |
BERT4REC |
- |
✓ |
x |
>=2.1.0 |
[CIKM 2019]BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer |
排序 |
FAT_DeepFFM |
- |
✓ |
x |
>=2.1.0 |
[2019]FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine |
排序 |
FFM(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[RECSYS 2016]Field-aware Factorization Machines for CTR Prediction |
排序 |
FNN |
- |
✓ |
x |
1.8.5 |
[ECIR 2016]Deep Learning over Multi-field Categorical Data |
排序 |
Deep Crossing |
- |
✓ |
x |
1.8.5 |
[ACM 2016]Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features |
排序 |
Pnn |
- |
✓ |
x |
1.8.5 |
[ICDM 2016]Product-based Neural Networks for User Response Prediction |
排序 |
DCN(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[KDD 2017]Deep & Cross Network for Ad Click Predictions |
排序 |
NFM |
- |
✓ |
x |
1.8.5 |
[SIGIR 2017]Neural Factorization Machines for Sparse Predictive Analytics |
排序 |
AFM |
- |
✓ |
x |
1.8.5 |
[IJCAI 2017]Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks |
排序 |
DMR(文档) |
Python CPU/GPU |
x |
x |
>=2.1.0 |
[AAAI 2020]Deep Match to Rank Model for Personalized Click-Through Rate Prediction |
排序 |
DeepFM(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[IJCAI 2017]DeepFM: A Factorization-Machine based Neural Network for CTR Prediction |
排序 |
xDeepFM(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[KDD 2018]xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems |
排序 |
DIN(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[KDD 2018]Deep Interest Network for Click-Through Rate Prediction |
排序 |
DIEN(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[AAAI 2019]Deep Interest Evolution Network for Click-Through Rate Prediction |
排序 |
GateNet(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[SIGIR 2020]GateNet: Gating-Enhanced Deep Network for Click-Through Rate Prediction |
排序 |
DLRM(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[CoRR 2019]Deep Learning Recommendation Model for Personalization and Recommendation Systems |
排序 |
NAML(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[IJCAI 2019]Neural News Recommendation with Attentive Multi-View Learning |
排序 |
DIFM(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[IJCAI 2020]A Dual Input-aware Factorization Machine for CTR Prediction |
排序 |
DeepFEFM(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[arXiv 2020]Field-Embedded Factorization Machines for Click-through rate prediction |
排序 |
BST(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[DLP_KDD 2019]Behavior Sequence Transformer for E-commerce Recommendation in Alibaba |
排序 |
AutoInt |
- |
✓ |
x |
>=2.1.0 |
[CIKM 2019]AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks |
排序 |
Wide&Deep(文档) |
Python CPU/GPU |
✓ |
x |
>=2.1.0 |
[DLRS 2016]Wide & Deep Learning for Recommender Systems |
排序 |
Fibinet |
- |
✓ |
✓ |
1.8.5 |
[RecSys19]FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction |
排序 |
FLEN |
- |
✓ |
✓ |
>=2.1.0 |
[2019]FLEN: Leveraging Field for Scalable CTR Prediction |
排序 |
DeepRec |
- |
✓ |
✓ |
>=2.1.0 |
[2017]Training Deep AutoEncoders for Collaborative Filtering |
排序 |
AutoFIS |
- |
✓ |
✓ |
>=2.1.0 |
[KDD 2020]AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction |
排序 |
DCN_V2 |
- |
✓ |
✓ |
>=2.1.0 |
[WWW 2021]DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems |
排序 |
DSIN |
- |
✓ |
✓ |
>=2.1.0 |
[IJCAI 2019]Deep Session Interest Network for Click-Through Rate Prediction |
排序 |
SIGN(文档) |
Python CPU/GPU |
✓ |
✓ |
>=2.1.0 |
[AAAI 2021]Detecting Beneficial Feature Interactions for Recommender Systems |
排序 |
IPRec(文档) |
- |
✓ |
✓ |
>=2.1.0 |
[SIGIR 2021]Package Recommendation with Intra- and Inter-Package Attention Networks |
排序 |
FGCNN |
- |
✓ |
✓ |
>=2.1.0 |
[WWW 2019]Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction |
排序 |
DPIN(文档) |
Python CPU/GPU |
✓ |
✓ |
>=2.1.0 |
[SIGIR 2021]Deep Position-wise Interaction Network for CTR Prediction |
多任务 |
AITM |
- |
✓ |
✓ |
>=2.1.0 |
[KDD 2021]Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising |
多任务 |
PLE(文档) |
Python CPU/GPU |
✓ |
✓ |
>=2.1.0 |
[RecSys 2020]Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations |
多任务 |
ESMM(文档) |
Python CPU/GPU |
✓ |
✓ |
>=2.1.0 |
[SIGIR 2018]Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate |
多任务 |
MMOE(文档) |
Python CPU/GPU |
✓ |
✓ |
>=2.1.0 |
[KDD 2018]Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts |
多任务 |
ShareBottom(文档) |
Python CPU/GPU |
✓ |
✓ |
>=2.1.0 |
[1998]Multitask learning |
多任务 |
Maml(文档) |
Python CPU/GPU |
x |
x |
>=2.1.0 |
[PMLR 2017]Model-agnostic meta-learning for fast adaptation of deep networks |
多任务 |
DSelect_K(文档) |
- |
x |
x |
>=2.1.0 |
[NeurIPS 2021]DSelect-k: Differentiable Selection in the Mixture of Experts with Applications to Multi-Task Learning |
多任务 |
ESCM2 |
- |
x |
x |
>=2.1.0 |
[SIGIR 2022]ESCM2: Entire Space Counterfactual Multi-Task Model for Post-Click Conversion Rate Estimation |
多任务 |
MetaHeac |
- |
x |
x |
>=2.1.0 |
[KDD 2021]Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertising |
重排序 |
Listwise |
- |
✓ |
x |
1.8.5 |
[2019]Sequential Evaluation and Generation Framework for Combinatorial Recommender System |