• This repository has been archived on 24/Jan/2024
  • Stars
    star
    531
  • Rank 83,526 (Top 2 %)
  • Language
    C++
  • License
    Apache License 2.0
  • Created over 6 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0

Build Status License Coverage Status

Welcome to the Anakin GitHub.

Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineers and is a large-scale application of industrial products.

Please refer to our release announcement to track the latest feature of Anakin.

Features

  • Flexibility

    Anakin is a cross-platform, high-performance inference engine, supports a wide range of neural network architectures and different hardware platforms. It is easy to run Anakin on GPU / x86 / ARM platform.

    Anakin has integrated with NVIDIA TensorRT and open source this part of integrated API to provide services, developers can call the API directly or modify it as needed, which will be more flexible for development requirements.

  • High performance

    In order to give full play to the performance of hardware, we optimized the forward prediction at different levels.

    • Automatic graph fusion. The goal of all performance optimizations under a given algorithm is to make the ALU as busy as possible. Operator fusion can effectively reduce memory access and keep the ALU busy.

    • Memory reuse. Forward prediction is a one-way calculation. We reuse the memory between the input and output of different operators, thus reducing the overall memory overhead.

    • Assembly level optimization. Saber is a underlying DNN library for Anakin, which is deeply optimized at assembly level.

NV GPU Benchmark

Machine And Enviornment

CPU: Intel(R) Xeon(R) CPU 5117 @ 2.0GHz
GPU: Tesla P4
cuda: CUDA8
cuDNN: v7

  • Time:warmup 10,running 1000 times to get average time
  • Latency (ms) and Memory(MB) of different batch

The counterpart of Anakin is the acknowledged high performance inference engine NVIDIA TensorRT 5 , The models which TensorRT 5 doesn't support we use the custom plugins to support.

VGG16

Batch_Size RT latency FP32(ms) Anakin2 Latency FP32 (ms) RT Memory (MB) Anakin2 Memory (MB)
1 8.52532 8.2387 1090.89 702
2 14.1209 13.8772 1056.02 768.76
4 24.4529 24.3391 1002.17 840.54
8 46.7956 46.3309 1098.98 935.61

Resnet50

Batch_Size RT latency FP32(ms) Anakin2 Latency FP32 (ms) RT Latency INT8 (ms) Anakin2 Latency INT8 (ms) RT Memory FP32(MB) Anakin2 Memory FP32(MB)
1 4.6447 3.0863 1.78892 1.61537 1134.88 311.25
2 6.69187 5.13995 2.71136 2.70022 1108.86 382
4 11.1943 9.20513 4.16771 4.77145 885.96 406.86
8 19.8769 17.1976 6.2798 8.68197 813.84 532.61

Resnet101

Batch_Size RT latency (ms) Anakin2 Latency (ms) RT Latency INT8 (ms) Anakin2 Latency INT8 (ms) RT Memory (MB) Anakin2 Memory (MB)
1 9.98695 5.44947 2.81031 2.74399 1159.16 500.5
2 17.3489 8.85699 4.8641 4.69473 1158.73 492
4 20.6198 16.8214 7.11608 8.45324 1021.68 541.08
8 31.9653 33.5015 11.2403 15.4336 914.49 611.54

X86 CPU Benchmark

Machine And Enviornment

CPU: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz with HT, for FP32 test
CPU: Intel(R) Xeon(R) Gold 6271 CPU @ 2.60GHz with HT, for INT8 test
System: CentOS 6.3 with GCC 4.8.2, for benchmark between Anakin and Intel Caffe

  • All test enable 8 thread parallel
  • Time:warmup 10,running 200 times to get average time

The counterpart of Anakin is Intel Cafe(1.1.6) with mklml.

Net_Name Batch_Size Anakin2 Latency(2650v4) fp32 (ms) caffe Latency(2650v4) fp32 (ms) Anakin2 Latency int8(6271) (ms)
resnet50 1 20.6201 24.1369 3.20866
resnet50 2 39.2286 43.1096 5.44311
resnet50 4 77.1392 81.8814 9.93424
resnet50 8 152.941 158.321 19.5618
vgg16 1 55.6132 70.532 15.3181
vgg16 2 96.5034 131.451 22.5082
vgg16 4 180.479 247.926 37.2974
vgg16 8 346.619 485.44 67.6682
mobilenetv1 1 3.98104 5.42775 0.926546
mobilenetv1 2 7.27079 9.16058 1.35007
mobilenetv1 4 14.4029 16.2505 2.37271
mobilenetv1 8 29.1651 29.8381 3.75992
vgg16_ssd 1 125.948 143.412
vgg16_ssd 2 247.242 266.22
vgg16_ssd 4 488.377 510.978
vgg16_ssd 8 972.762 995.407
mobilenetv2 1 3.78504 23.0066
mobilenetv2 2 7.24622 65.9301
mobilenetv2 4 13.7638 85.3893
mobilenetv2 8 28.4093 131.669

ARM CPU Benchmark

Machine And Enviornment

CPU: Kirin 980
CPU: Snapdragon 652
CPU: Snapdragon 855
CPU: RK3399

  • Compile circumstance: Android ndk cross compile,gcc 4.9,enable neon
  • Time:warmup 10,running 10 times to get average time
  • Note: 1、shufflenetv2 int8 model add swish operator

The counterpart of Anakin is ncnn(20190320). This benchmark we test ARMv7 ARMv8 splitly

ARMv8 TEST

  • ABI: arm64-v8a
  • Latency (ms) of one batch
Kirin 980 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 34.172 19.369 12.723 37.588 20.692 13.280 45.420 24.220 16.730 50.560 27.820 20.010
mobilenet_v2 30.489 17.784 12.327 29.581 17.208 15.307 30.390 17.310 12.900
mobilenet_ssd 71.609 37.477 28.952 88.220 70.070 66.430 103.700 85.160 85.320
resnet50 255.748 137.842 104.628 1299.480 695.830 498.010 243.360 131.100 89.800
shufflenetv1 11.544 8.931 7.027 12.810 9.390 8.030
shufflenetv2 11.687 7.899 5.321 20.402 11.529 9.061
squeezenet 28.580 16.638 14.435
googlenet 93.917 52.742 40.301 130.875 72.522 54.204


Snapdragon 855 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 32.019 19.024 10.491 34.363 20.292 10.382 37.110 22.310 13.520 47.430 28.350 15.830
mobilenet_v2 28.533 17.455 10.433 24.487 15.182 9.133 25.060 15.970 11.250
mobilenet_ssd 66.454 41.397 23.639 101.560 69.380 43.930 136.420 91.010 47.490
resnet50 201.362 132.133 78.300 1141.290 724.090 385.990 229.020 138.450 82.060
shufflenetv1 10.153 7.101 5.327 11.610 8.020 5.870
shufflenetv2 10.868 6.713 4.526 17.306 10.987 6.788
squeezenet 25.880 16.134 9.697
googlenet 85.774 54.518 34.025 118.120 73.686 41.865


Snapdragon 652 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 109.994 54.937 33.174 83.887 43.639 24.665 123.320 122.670 65.100 128.800 154.370 125.570
mobilenet_v2 80.712 46.314 30.874 69.340 43.590 31.864 89.920 90.900 55.320
mobilenet_ssd 246.459 121.684 134.019 248.190 138.170 142.350 247.020 145.080 211.000
resnet50 673.285 346.287 378.065 880.940 514.190 533.760 313.630
shufflenetv1 34.948 26.635 21.571 39.950 25.520 20.180
shufflenetv2 35.530 21.440 16.434 49.498 29.116 19.346
squeezenet 87.037 47.192 28.663
googlenet 268.023 148.533 95.624 236.492 131.510 81.561


RK3399 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 111.317 60.008 87.201 45.693 149.270 91.200 142.790 86.140
mobilenet_v2 105.767 60.899 79.065 53.914 118.530 86.900
mobilenet_ssd 232.923 128.337 268.900 157.860 256.560 149.730
resnet50 671.800 369.386 1029.300 571.230 569.250 344.830
shufflenetv1 38.761 25.971
shufflenetv2 36.220 22.095 51.879 30.351
squeezenet 98.489 54.863
googlenet 274.166 159.429 235.085 133.044

ARMv7 TEST

  • ABI: armveabi-v7a with neon
  • Latency (ms) of one batch
Kirin 980 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 39.051 19.813 14.184 39.026 22.048 14.250 50.240 26.850 20.010 92.900 49.420 37.160
mobilenet_v2 36.052 19.550 14.507 32.656 19.641 15.735 35.890 20.730 18.550
mobilenet_ssd 83.474 44.530 33.116 99.960 53.160 84.360 180.000 91.380 68.140
resnet50 291.478 158.954 129.484 1412.37 766.62 560.760 355.010 189.18 133.410
shufflenetv1 11.909 9.761 7.441 16.030 10.660 8.120
shufflenetv2 11.755 7.983 6.289 21.968 14.111 9.888
squeezenet 30.148 20.908 17.084
googlenet 108.210 65.798 58.630 140.886 79.910 60.693


Snapdragon 855 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 34.015 20.064 11.410 42.222 21.532 11.746 41.150 24.870 18.420 79.180 48.470 24.530
mobilenet_v2 30.742 18.507 11.354 24.628 15.133 9.079 30.060 19.220 15.520
mobilenet_ssd 69.749 44.010 26.000 85.030 62.770 48.940 154.600 138.700 82.140
resnet50 218.581 146.509 92.899 1380.340 996.410 540.660 324.720 261.920 126.270
shufflenetv1 11.032 7.430 5.369 13.390 9.270 6.360
shufflenetv2 11.372 7.120 4.728 19.393 12.278 7.719
squeezenet 27.860 17.538 10.729
googlenet 100.719 69.509 49.021 127.982 83.369 50.275


Snapdragon 652 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread 1 thread 2 thread 4 thread
mobilenet_v1 121.982 63.004 37.325 86.672 45.728 26.354 130.740 140.850 81.810 184.630 192.730 144.740
mobilenet_v2 89.113 50.609 35.291 72.679 45.888 33.887 94.520 101.380 65.570
mobilenet_ssd 236.466 132.293 86.335 270.630 295.520 174.280 350.640 286.420 243.850
resnet50 751.528 405.433 255.699 2762.890 1447.070 883.730 664.180 369.020
shufflenetv1 36.883 23.718 15.144 53.660 33.450 23.330
shufflenetv2 36.933 26.353 20.507 53.243 31.083 21.550
squeezenet 92.748 51.936 33.027
googlenet 296.092 179.542 125.509 242.505 140.083 89.646


RK3399 Anakin fp32 Anakin int8 NCNN fp32 NCNN int8
1 thread 2 thread 1 thread 2 thread 1 thread 2 thread 1 thread 2 thread
mobilenet_v1 116.981 65.033 87.768 47.617 155.830 98.520 201.800 116.440
mobilenet_v2 118.229 70.567 83.790 55.413 126.530 90.930
mobilenet_ssd 237.196 134.508 292.130 183.650 361.570 200.370
resnet50 725.582 413.995 2883.120 1632.800 702.660 404.970
shufflenetv1 41.094 27.353
shufflenetv2 37.660 23.489 53.558 32.122
squeezenet 104.519 59.402
googlenet 305.304 190.897 244.855 142.493

Documentation

All you need is in Doc Index

We also provide English and Chinese tutorial documentation.

Ask Questions

You are welcome to submit questions and bug reports as Github Issues.

Copyright and License

Anakin is provided under the Apache-2.0 license.

Acknowledgement

Anakin refers to the following projects:

More Repositories

1

PaddleOCR

Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
43,170
star
2

Paddle

PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
C++
22,193
star
3

PaddleDetection

Object Detection toolkit based on PaddlePaddle. It supports object detection, instance segmentation, multiple object tracking and real-time multi-person keypoint detection.
Python
12,744
star
4

PaddleHub

Awesome pre-trained models toolkit based on PaddlePaddle. (400+ models including Image, Text, Audio, Video and Cross-Modal with Easy Inference & Serving)【安全加固,暂停交互,请耐心等待】
Python
12,704
star
5

PaddleNLP

👑 Easy-to-use and powerful NLP and LLM library with 🤗 Awesome model zoo, supporting wide-range of NLP tasks from research to industrial applications, including 🗂Text Classification, 🔍 Neural Search, ❓ Question Answering, ℹ️ Information Extraction, 📄 Document Intelligence, 💌 Sentiment Analysis etc.
Python
11,953
star
6

PaddleSpeech

Easy-to-use Speech Toolkit including Self-Supervised Learning model, SOTA/Streaming ASR with punctuation, Streaming TTS with text frontend, Speaker Verification System, End-to-End Speech Translation and Keyword Spotting. Won NAACL2022 Best Demo Award.
Python
11,053
star
7

PaddleSeg

Easy-to-use image segmentation library with awesome pre-trained model zoo, supporting wide-range of practical tasks in Semantic Segmentation, Interactive Segmentation, Panoptic Segmentation, Image Matting, 3D Segmentation, etc.
Python
8,601
star
8

PaddleGAN

PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, Wav2Lip, picture repair, image editing, photo2cartoon, image style transfer, GPEN, and so on.
Python
7,858
star
9

Paddle-Lite

PaddlePaddle High Performance Deep Learning Inference Engine for Mobile and Edge (飞桨高性能深度学习端侧推理引擎)
C++
6,953
star
10

models

Officially maintained, supported by PaddlePaddle, including CV, NLP, Speech, Rec, TS, big models and so on.
Python
6,897
star
11

ERNIE

Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.
Python
6,300
star
12

PaddleClas

A treasure chest for visual classification and recognition powered by PaddlePaddle
Python
5,418
star
13

PaddleX

All-in-One Development Tool based on PaddlePaddle(飞桨低代码全流程开发工具)
Python
4,781
star
14

VisualDL

Deep Learning Visualization Toolkit(『飞桨』深度学习可视化工具 )
HTML
4,773
star
15

PaddleRec

Recommendation Algorithm大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、Bert4Rec、DeepWalk、SSR、AITM,DSIN,SIGN,IPREC、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、ESCMM, MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、DMR、GateNet、NAML、DIFM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、Fibinet、ListWise、DeepRec、ENSFM,TiSAS,AutoFIS等,包含经典推荐系统数据集criteo 、movielens等
Python
4,273
star
16

PARL

A high-performance distributed training framework for Reinforcement Learning
Python
3,261
star
17

awesome-DeepLearning

深度学习入门课、资深课、特色课、学术案例、产业实践案例、深度学习知识百科及面试题库The course, case and knowledge of Deep Learning and AI
Jupyter Notebook
3,001
star
18

FastDeploy

⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end optimization, multi-platform and multi-framework support.
C++
2,952
star
19

book

Deep Learning 101 with PaddlePaddle (『飞桨』深度学习框架入门教程)
Jupyter Notebook
2,735
star
20

Research

novel deep learning research works with PaddlePaddle
Python
1,715
star
21

PGL

Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle
Python
1,572
star
22

PaddleSlim

PaddleSlim is an open-source library for deep model compression and architecture search.
Python
1,557
star
23

PaddleVideo

Awesome video understanding toolkits based on PaddlePaddle. It supports video data annotation tools, lightweight RGB and skeleton based action recognition model, practical applications for video tagging and sport action detection.
Python
1,512
star
24

PaddleHelix

Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集
Python
1,007
star
25

Paddle.js

Paddle.js is a web project for Baidu PaddlePaddle, which is an open source deep learning framework running in the browser. Paddle.js can either load a pre-trained model, or transforming a model from paddle-hub with model transforming tools provided by Paddle.js. It could run in every browser with WebGL/WebGPU/WebAssembly supported. It could also run in Baidu Smartprogram and WX miniprogram.
JavaScript
980
star
26

Serving

A flexible, high-performance carrier for machine learning models(『飞桨』服务化部署框架)
C++
894
star
27

RocketQA

🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.
Python
763
star
28

X2Paddle

Deep learning model converter for PaddlePaddle. (『飞桨』深度学习模型转换工具)
Python
727
star
29

Paddle2ONNX

ONNX Model Exporter for PaddlePaddle
Python
723
star
30

Paddle-Lite-Demo

lib, demo, model, data
C++
675
star
31

Knover

Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle
Python
674
star
32

Parakeet

PAddle PARAllel text-to-speech toolKIT (supporting Tacotron2, Transformer TTS, FastSpeech2/FastPitch, SpeedySpeech, WaveFlow and Parallel WaveGAN)
Python
600
star
33

FlyCV

FlyCV is a high-performance library for processing computer visual tasks.
C++
577
star
34

Paddle3D

A 3D computer vision development toolkit based on PaddlePaddle. It supports point-cloud object detection, segmentation, and monocular 3D object detection models.
Python
565
star
35

Quantum

Jupyter Notebook
564
star
36

PaddleYOLO

🚀🚀🚀 YOLO series of PaddlePaddle implementation, PP-YOLOE+, RT-DETR, YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOv10, YOLOX, YOLOv5u, YOLOv7u, YOLOv6Lite, RTMDet and so on. 🚀🚀🚀
Python
551
star
37

VIMER

视觉预训练基础模型仓库
Python
494
star
38

PaddleTS

Awesome Easy-to-Use Deep Time Series Modeling based on PaddlePaddle, including comprehensive functionality modules like TSDataset, Analysis, Transform, Models, AutoTS, and Ensemble, etc., supporting versatile tasks like time series forecasting, representation learning, and anomaly detection, etc., featured with quick tracking of SOTA deep models.
Python
481
star
39

PaddleFL

Federated Deep Learning in PaddlePaddle
Python
480
star
40

PaddleFleetX

飞桨大模型开发套件,提供大语言模型、跨模态大模型、生物计算大模型等领域的全流程开发工具链。
Python
436
star
41

ERNIE-SDK

ERNIE Bot Agent is a Large Language Model (LLM) Agent Framework, powered by the advanced capabilities of ERNIE Bot and the platform resources of Baidu AI Studio.
Jupyter Notebook
341
star
42

PaddleSpatial

PaddleSpatial is an open-source spatial-temporal computing tool based on PaddlePaddle.
GLSL
331
star
43

PaddleRS

Awesome Remote Sensing Toolkit based on PaddlePaddle.
Python
330
star
44

PaddleMIX

Paddle Multimodal Integration and eXploration, supporting mainstream multi-modal tasks, including end-to-end large-scale multi-modal pretrain models and diffusion model toolbox. Equipped with high performance and flexibility.
Python
308
star
45

PaddleCloud

PaddlePaddle Docker images and K8s operators for PaddleOCR/Detection developers to use on public/private cloud.
Go
284
star
46

MetaGym

Collection of Reinforcement Learning / Meta Reinforcement Learning Environments.
Python
276
star
47

PASSL

PASSL包含 SimCLR,MoCo v1/v2,BYOL,CLIP,PixPro,simsiam, SwAV, BEiT,MAE 等图像自监督算法以及 Vision Transformer,DEiT,Swin Transformer,CvT,T2T-ViT,MLP-Mixer,XCiT,ConvNeXt,PVTv2 等基础视觉算法
Python
273
star
48

PaddleScience

PaddleScience is SDK and library for developing AI-driven scientific computing applications based on PaddlePaddle.
Python
259
star
49

InterpretDL

InterpretDL: Interpretation of Deep Learning Models,基于『飞桨』的模型可解释性算法库。
Python
241
star
50

docs

Documentations for PaddlePaddle
Python
240
star
51

Paddle-Inference-Demo

C++
235
star
52

PaddleRobotics

PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.
Python
215
star
53

TrustAI

飞桨可信AI
Python
182
star
54

PALM

a Fast, Flexible, Extensible and Easy-to-use NLP Large-scale Pretraining and Multi-task Learning Framework.
Python
176
star
55

ElasticCTR

ElasticCTR,即飞桨弹性计算推荐系统,是基于Kubernetes的企业级推荐系统开源解决方案。该方案融合了百度业务场景下持续打磨的高精度CTR模型、飞桨开源框架的大规模分布式训练能力、工业级稀疏参数弹性调度服务,帮助用户在Kubernetes环境中一键完成推荐系统部署,具备高性能、工业级部署、端到端体验的特点,并且作为开源套件,满足二次深度开发的需求。
Python
176
star
56

AutoDL

Python
158
star
57

PLSC

Paddle Large Scale Classification Tools,supports ArcFace, CosFace, PartialFC, Data Parallel + Model Parallel. Model includes ResNet, ViT, Swin, DeiT, CaiT, FaceViT, MoCo, MAE, ConvMAE, CAE.
Python
148
star
58

CINN

Compiler Infrastructure for Neural Networks
C++
142
star
59

LiteKit

Off-The-Shelf AI Development Kit for APP Developers based on Paddle Lite (『飞桨』移动端开箱即用AI套件, 包含Java & Objective C接口支持)
Objective-C
134
star
60

PaddleFlow

Go
113
star
61

PaddleSports

Python
101
star
62

PaddleDTX

Paddle with Decentralized Trust based on Xuperchain
Go
89
star
63

PaConvert

PaddlePaddle Code Convert Toolkit. 『飞桨』深度学习代码转换工具
Python
87
star
64

XWorld

A C++/Python simulator package for reinforcement learning
C++
85
star
65

community

PaddlePaddle Developer Community
Jupyter Notebook
83
star
66

PaddleSleeve

PaddleSleeve
Python
76
star
67

benchmark

Python
76
star
68

hapi

hapi is a High-level API that supports both static and dynamic execution modes
Jupyter Notebook
76
star
69

Mobile

Embedded and Mobile Deployment
Python
71
star
70

PaddleCustomDevice

PaddlePaddle custom device implementaion. (『飞桨』自定义硬件接入实现)
Python
68
star
71

PaddleDepth

Python
63
star
72

PaddlePaddle.org

PaddlePaddle.org is the repository for the website of the PaddlePaddle open source project.
CSS
48
star
73

PaDiff

Paddle Automatically Diff Precision Toolkits.
Python
46
star
74

EasyData

Python
46
star
75

PaddleTest

PaddlePaddle TestSuite
Python
44
star
76

epep

Easy & Effective Application Framework for PaddlePaddle
Python
34
star
77

paddle-ce-latest-kpis

Paddle Continuous Evaluation, keep updating.
Python
26
star
78

VisionTools

Python
21
star
79

PaddleCraft

Take neural networks as APIs for human-like AI.
Python
20
star
80

Contrib

contribution works with PaddlePaddle from the third party developers
Python
20
star
81

PaddleTransfer

飞桨迁移学习算法库
Python
19
star
82

continuous_evaluation

Macro Continuous Evaluation Platform for Paddle.
Python
19
star
83

recordio

An implementation of the RecordIO file format.
Go
19
star
84

Perf

SOTA benchmark
Python
17
star
85

Paddle-bot

Python
17
star
86

examples

Python
17
star
87

continuous_integration

Python
16
star
88

PaddleSOT

A Bytecode level Implementation of Symbolic OpCode Translator For PaddlePaddle
Python
15
star
89

tape

C++
14
star
90

paddle_upgrade_tool

upgrade paddle-1.x to paddle-2.0
Python
12
star
91

PaddleAPEX

PaddleAPEX:Paddle Accuracy and Performance EXpansion pack
Python
7
star
92

talks

Shell
6
star
93

CLA

5
star
94

any

Legacy Repo only for PaddlePaddle with version <= 1.3
C++
5
star