• Stars
    star
    199
  • Rank 196,105 (Top 4 %)
  • Language
    Python
  • License
    MIT License
  • Created about 6 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

unet liver

Unet network for liver CT image segmentation

data preparation

structure of project

  --project
  	main.py
  	 --data
   		--train
   		--val

data and trained weight link: https://pan.baidu.com/s/1dgGnsfoSmL1lbOUwyItp6w code: 17yr

all dataset you can access from: https://competitions.codalab.org/competitions/15595

training

python main.py train

testing

load the last saved weight

python main.py test --ckpt=weights_19.pth

数据准备

项目文件分布如下

  --project
  	main.py
  	 --data
   		--train
   		--val

数据和权重可以使用百度云下载 链接:

链接: https://pan.baidu.com/s/1dgGnsfoSmL1lbOUwyItp6w 提取码: 17yr

全部数据集: https://competitions.codalab.org/competitions/15595

模型训练

python main.py train

测试模型训练

加载权重,默认保存最后一个权重

python main.py test --ckpt=weights_19.pth

多类别

修改2个地方即可:unet最后一层的通道数设置为类别数;损失函数使用CrossEntropyLoss

bath_size,img_size,num_classes=2,3,4
#model = Unet(3, num_classes)
criterion = nn.CrossEntropyLoss()
#assume the pred is the output of the model
pred=torch.rand(bath_size,num_classes,img_size,img_size)
target=torch.randint(num_classes,(bath_size,img_size,img_size))
loss=criterion(pred,target)

Demo

liver