VAE-tutorial
A simple tutorial of Variational AutoEncoder(VAE) models. This repository contains the implementations of following VAE families.
- Variational AutoEncoder (VAE, D.P. Kingma et. al., 2013)
- Vector Quantized Variational AutoEncoder (VQ-VAE, A. Oord et. al., 2017)
Requirements
How-to-use
simply run the <file_name>.ipynb files using jupyter notebook.
Experimental Results
Variational AutoEncoder (VAE)
- trained on MNIST dataset for 20 epochs
- groundtruth(left) vs. generated(reconstructed, right)
- generated random samples from noise vector
Vector Quantized Variational AutoEncoder (VQ-VAE)
- trained on CIFAR-10 dataset for 50 epochs
- groundtruth(top) vs. reconstruction(bottom)
- randomly sampled codes from codebook