• Stars
    star
    319
  • Rank 131,491 (Top 3 %)
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created almost 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

🔥3D点云目标检测&语义分割(深度学习)-SOTA方法,代码,论文,数据集等

3D-Point-Clouds

3D点云SOTA方法,代码,论文,数据集(点云目标检测&分割)

更多自动驾驶相关交流群,欢迎扫码加入:自动驾驶感知(PCL/ROS+DL):技术交流群汇总(新版)

本人创建星球 【自动驾驶感知(PCL/ROS+DL)】 专注于自动驾驶感知领域,包括传统方法(PCL点云库,ROS)和深度学习(目标检测+语义分割)方法。同时涉及Apollo,Autoware(基于ros2),BEV感知,三维重建,SLAM(视觉+激光雷达) ,模型压缩(蒸馏+剪枝+量化等),自动驾驶模拟仿真,自动驾驶数据集标注&数据闭环等自动驾驶全栈技术,欢迎扫码二维码加入,一起登顶自动驾驶的高峰!

image

点云处理方法上主要包括两类方法

@双愚 , 若fork或star请注明来源

TODO

目录

0 目标检测框架(pcdet+mmdetection3d+det3d+paddle3d)

【202209done】目标检测框架(pcdet+mmdetection3d+det3d+paddle3d)文章撰写

代码注解笔记:

  1. pcdet:https://github.com/HuangCongQing/pcdet-note
  2. mmdetection3d:https://github.com/HuangCongQing/mmdetection3d-note
  3. det3d: TODO
  4. paddle3d: TODO

1 paper(code)

2 Datasets

自动驾驶相关数据集调研总结【附下载地址】(更新ing)

数据集基本处理: 数据集标注文件处理

部分数据下载脚本:https://github.com/HuangCongQing/download_3D_dataset

3 点云可视化

点云可视化笔记和代码:https://github.com/HuangCongQing/Point-Clouds-Visualization

3D点云可视化的库有很多,你的选择可能是:

  • pcl 点云可视化 [c++]
  • ROS topic可视化 [c++] [python]
  • open3D [python]
  • mayavi[python]
  • matplolib [python]

4 点云数据标注

数据标注工具总结:https://github.com/HuangCongQing/data-labeling-tools

paper(code)

3D_Object_Detection

  • One-stage
  • Two-stage

One-stage

Voxel-Net、SECOND、PointPillars、HVNet、DOPS、Point-GNN、SA-SSD、3D-VID、3DSSD

  • Voxel-Net
  • SECOND
  • PointPillars
  • HVNet
  • DOPS
  • Point-GNN
  • SA-SSD
  • 3D-VID
  • 3DSSD

Two-stage

F-pointNet、F-ConvNet、Point-RCNN、Part-A^2、PV-RCNN、Fast Point RCNN、TANet

  • F-pointNet
  • F-ConvNet
  • Point-RCNN
  • Part-A^2
  • PV-RCNN
  • Fast Point RCNN
  • TANet

3D_Semantic_Segmentation

3D_Object_Detection

PointNet is proposed to learn per-point features using shared MLPs and global features using symmetrical pooling functions. Based on PointNet, a series of point-based networks have been proposed

Point-based Methods: these methods can be roughly divided into pointwise MLP methods, point convolution methods, RNN-based methods, and graph-based methods

1 pointwise MLP methods

PointNet++,PointSIFT,PointWeb,ShellNet,RandLA-Net

PointNet++ PointSIFT PointWeb ShellNet RandLA-Net

2 point convolution methods

PointCNN PCCN A-CNN ConvPoint pointconv KPConv DPC InterpCNN

  • PointCNN
  • PCCN
  • A-CNN
  • ConvPoint
  • pointconv
  • KPConv
  • DPC
  • InterpCNN

3 RNN-based methods

G+RCU RSNet 3P-RNN DAR-Net

  • G+RCU
  • RSNet
  • 3P-RNN
  • DAR-Net

4 graph-based methods

DGCNN SPG SSP+SPG PyramNet GACNet PAG HDGCN HPEIN SPH3D-GCN DPAM

  • DGCNN
  • SPG
  • SSP+SPG
  • PyramNet
  • GACNet
  • PAG
  • HDGCN
  • HPEIN
  • SPH3D-GCN
  • DPAM

3D_Instance Segmentation

Datasets

数据集下载

Graviti 收录了 400 多个高质量 CV 类数据集,覆盖无人驾驶、智慧零售、机器人等多种 AI 应用领域。举两个例子: 文章> https://bbs.cvmart.net/topics/3346

Datasets数据集汇总

https://github.com/Yochengliu/awesome-point-cloud-analysis#---datasets

  • [KITTI] The KITTI Vision Benchmark Suite. [det.]**常用
  • [ModelNet] The Princeton ModelNet . [cls.]
  • [ShapeNet] A collaborative dataset between researchers at Princeton, Stanford and TTIC. [seg.]
  • [PartNet] The PartNet dataset provides fine grained part annotation of objects in ShapeNetCore. [seg.]
  • [PartNet] PartNet benchmark from Nanjing University and National University of Defense Technology. [seg.]
  • [S3DIS**] The Stanford Large-Scale 3D Indoor Spaces Dataset. [seg.]**常用
  • [ScanNet] Richly-annotated 3D Reconstructions of Indoor Scenes. [cls. seg.]
  • [Stanford 3D] The Stanford 3D Scanning Repository. [reg.]
  • [UWA Dataset] . [cls. seg. reg.]
  • [Princeton Shape Benchmark] The Princeton Shape Benchmark.
  • [SYDNEY URBAN OBJECTS DATASET] This dataset contains a variety of common urban road objects scanned with a Velodyne HDL-64E LIDAR, collected in the CBD of Sydney, Australia. There are 631 individual scans of objects across classes of vehicles, pedestrians, signs and trees. [cls. match.]
  • [ASL Datasets Repository(ETH)] This site is dedicated to provide datasets for the Robotics community with the aim to facilitate result evaluations and comparisons. [cls. match. reg. det]
  • [Large-Scale Point Cloud Classification Benchmark(ETH)] This benchmark closes the gap and provides a large labelled 3D point cloud data set of natural scenes with over 4 billion points in total. [cls.]
  • [Robotic 3D Scan Repository] The Canadian Planetary Emulation Terrain 3D Mapping Dataset is a collection of three-dimensional laser scans gathered at two unique planetary analogue rover test facilities in Canada.
  • [Radish] The Robotics Data Set Repository (Radish for short) provides a collection of standard robotics data sets.
  • [IQmulus & TerraMobilita Contest] The database contains 3D MLS data from a dense urban environment in Paris (France), composed of 300 million points. The acquisition was made in January 2013. [cls. seg. det.]
  • [Oakland 3-D Point Cloud Dataset] This repository contains labeled 3-D point cloud laser data collected from a moving platform in a urban environment.
  • [Robotic 3D Scan Repository] This repository provides 3D point clouds from robotic experiments,log files of robot runs and standard 3D data sets for the robotics community.
  • [Ford Campus Vision and Lidar Data Set] The dataset is collected by an autonomous ground vehicle testbed, based upon a modified Ford F-250 pickup truck.
  • [The Stanford Track Collection] This dataset contains about 14,000 labeled tracks of objects as observed in natural street scenes by a Velodyne HDL-64E S2 LIDAR.
  • [PASCAL3D+] Beyond PASCAL: A Benchmark for 3D Object Detection in the Wild. [pos. det.]
  • [3D MNIST] The aim of this dataset is to provide a simple way to get started with 3D computer vision problems such as 3D shape recognition. [cls.]
  • [WAD] [ApolloScape] The datasets are provided by Baidu Inc. [tra. seg. det.]
  • [nuScenes] The nuScenes dataset is a large-scale autonomous driving dataset.用过
  • [PreSIL] Depth information, semantic segmentation (images), point-wise segmentation (point clouds), ground point labels (point clouds), and detailed annotations for all vehicles and people. [paper] [det. aut.]
  • [3D Match] Keypoint Matching Benchmark, Geometric Registration Benchmark, RGB-D Reconstruction Datasets. [reg. rec. oth.]
  • [BLVD] (a) 3D detection, (b) 4D tracking, (c) 5D interactive event recognition and (d) 5D intention prediction. [ICRA 2019 paper] [det. tra. aut. oth.]
  • [PedX] 3D Pose Estimation of Pedestrians, more than 5,000 pairs of high-resolution (12MP) stereo images and LiDAR data along with providing 2D and 3D labels of pedestrians. [ICRA 2019 paper] [pos. aut.]
  • [H3D] Full-surround 3D multi-object detection and tracking dataset. [ICRA 2019 paper] [det. tra. aut.]
  • [Argoverse BY ARGO AI] Two public datasets (3D Tracking and Motion Forecasting) supported by highly detailed maps to test, experiment, and teach self-driving vehicles how to understand the world around them.[CVPR 2019 paper][tra. aut.]
  • [Matterport3D] RGB-D: 10,800 panoramic views from 194,400 RGB-D images. Annotations: surface reconstructions, camera poses, and 2D and 3D semantic segmentations. Keypoint matching, view overlap prediction, normal prediction from color, semantic segmentation, and scene classification. [3DV 2017 paper] [code] [blog]
  • [SynthCity] SynthCity is a 367.9M point synthetic full colour Mobile Laser Scanning point cloud. Nine categories. [seg. aut.]
  • [Lyft Level 5] Include high quality, human-labelled 3D bounding boxes of traffic agents, an underlying HD spatial semantic map. [det. seg. aut.]
  • [SemanticKITTI] Sequential Semantic Segmentation, 28 classes, for autonomous driving. All sequences of KITTI odometry labeled. [ICCV 2019 paper**] [seg. oth. aut.]**常用
  • [NPM3D] The Paris-Lille-3D has been produced by a Mobile Laser System (MLS) in two different cities in France (Paris and Lille). [seg.]
  • [The Waymo Open Dataset] The Waymo Open Dataset is comprised of high resolution sensor data collected by Waymo self-driving cars in a wide variety of conditions. [det.]
  • [A*3D: An Autonomous Driving Dataset in Challeging Environments] A*3D: An Autonomous Driving Dataset in Challeging Environments. [det.]
  • [PointDA-10 Dataset] Domain Adaptation for point clouds.
  • [Oxford Robotcar] The dataset captures many different combinations of weather, traffic and pedestrians. [cls. det. rec.]

常用分割数据集

  • [S3DIS**] The Stanford Large-Scale 3D Indoor Spaces Dataset. [seg.] [常用]
  • [SemanticKITTI] Sequential Semantic Segmentation, 28 classes, for autonomous driving. All sequences of KITTI odometry labeled. [ICCV 2019 paper**] [seg. oth. aut.] [常用]
  • Semantic3d

常用分类数据集

todo

常用目标检测数据集

  • [KITTI] The KITTI Vision Benchmark Suite. [det.]**常用
  • [nuScenes] The nuScenes dataset is a large-scale autonomous driving dataset.用过
  • [The Waymo Open Dataset] The Waymo Open Dataset is comprised of high resolution sensor data collected by Waymo self-driving cars in a wide variety of conditions. [det.]

References

License

Copyright (c) 双愚. All rights reserved.

Licensed under the MIT License.


微信公众号:【双愚】(huang_chongqing) 聊科研技术,谈人生思考,欢迎关注~

image

往期推荐:

  1. 本文不提供职业建议,却能助你一生
  2. 聊聊我们大学生面试
  3. 清华大学刘知远:好的研究方法从哪来

本人创建星球 【自动驾驶感知(PCL/ROS+DL)】 专注于自动驾驶感知领域,包括传统方法(PCL点云库,ROS)和深度学习(目标检测+语义分割)方法。同时涉及Apollo,Autoware(基于ros2),BEV感知,三维重建,SLAM(视觉+激光雷达) ,模型压缩(蒸馏+剪枝+量化等),自动驾驶模拟仿真,自动驾驶数据集标注&数据闭环等自动驾驶全栈技术,欢迎扫码二维码加入,一起登顶自动驾驶的高峰! image

More Repositories

1

Algorithms_MathModels

【国赛】【美赛】数学建模相关算法 MATLAB实现(2018年初整理)
MATLAB
1,671
star
2

pcl-learning

🔥PCL(Point Cloud Library)点云库学习记录
C++
1,299
star
3

UCAS_Course_2019

中国科学院大学2019-2020课程(秋季,春季,夏季)
HTML
1,125
star
4

AI_competitions

AI比赛相关信息汇总
546
star
5

ROS

🔥ROS(c++)机器人操作系统 学习(写于2020年夏)
CMake
411
star
6

3D-LIDAR-Multi-Object-Tracking

🔥3D-MOT(点云多目标检测和追踪C++) (2020 · 秋) 代码有详细注解
C++
309
star
7

MachineLearning_Ng

吴恩达机器学习coursera课程,学习代码(2017年秋) The Stanford Coursera course on MachineLearning with Andrew Ng
Jupyter Notebook
207
star
8

deeplearning.ai-note

网易云课堂终于官方发布了吴恩达经过授权的汉化课程-“”深度学习专项课程“”,这是自己做的一些笔记以及代码。下为网易云学习链接
Jupyter Notebook
197
star
9

plane_fit_ground_filter

点云分割论文2017 Fast segmentation of 3d point clouds: A paradigm on lidar data for autonomous vehicle applications
C++
96
star
10

OpenCV

opencv(python&c++)学习教程 1、人机互动 2、物体识别 3、图像分割 4、人脸识别 5、动作识别 6、运动跟踪 7、机器人 8、运动分析 9、机器视觉 10、结构分析 11、汽车安全驾驶
Jupyter Notebook
68
star
11

linefit_ground_segmentation_details

快速3D点云分割论文代码(带注解):Fast segmentation of 3d point clouds for ground vehicles
C++
62
star
12

awesome-data-labeling-tools

图像images/点云point clouds标注工具汇总
61
star
13

Point-Clouds-Visualization

visualization点云可视化(open3D, mayavi, rviz(ros), PCL等)
Python
53
star
14

pcdet-note

OpenPCDet 代码重点注解笔记
Python
48
star
15

multi-sensor-fusion

多传感器融合(lidar radar camera)
HTML
44
star
16

mmdetection3d-note

mmdetection3d 代码重点注解笔记
Python
38
star
17

CS231n_Spring_2019

CS231n_Spring(2019年秋季)计算机视觉课程
Jupyter Notebook
36
star
18

apollo_note

百度Apollo代码注释笔记(重点感知笔记)
C++
35
star
19

RandLA-Net-Enhanced

RandLA-Net改进版
Python
33
star
20

vue2-music

基于Vue2.0的移动端音乐播放器,QQ音乐API,可听QQ高品质歌曲。 Vue music player
Vue
26
star
21

cuda-learning

cuda编程学习入门
Cuda
18
star
22

college-resource

各大高校大学生课程学习资源
18
star
23

AlgorithmsAndDataStructure

JAVA 算法数据结构代码 演习实践
Java
15
star
24

Python

Python学习
Jupyter Notebook
13
star
25

postgraduate

研究生培养 发展等 科研
13
star
26

Spider

爬虫python3 (request,BeautifulSoup,xpath,re,Selenium,wordcloud等模块)
HTML
12
star
27

pytorch

pytorch学习
Jupyter Notebook
12
star
28

driving-behavior-risk-prediction.

2018平安产险数据建模大赛 驾驶行为预测驾驶风险
Python
11
star
29

model-compression-optimization

model compression and optimization for deployment for Pytorch, including knowledge distillation, quantization and pruning.(知识蒸馏,量化,剪枝)
Python
11
star
30

sklearn

scikit-learn (sklearn) 常用的机器学习,包括回归(Regression)、降维(Dimensionality Reduction)、分类(Classfication)、聚类(Clustering)等方法
Jupyter Notebook
11
star
31

front-end-interview

前端面试问题汇总
JavaScript
9
star
32

download_3D_dataset

三维点云数据集下载sh脚本(目标检测,语义分割, ...)
Shell
9
star
33

open3d-learning

open3d Point cloud processing and visualization(点云处理和可视化)
Python
9
star
34

Quantum-Computing

量子计算(Quantum Computing)
9
star
35

useful-Demo

前端js一些小例子
HTML
9
star
36

PointPainting-notes

PointPainting 笔记(代码已fix,可正常运行)
Python
9
star
37

mirrors

国内镜像
8
star
38

LaTeX

LaTeX学习记录
TeX
8
star
39

Matlab-learning

MATLAB学习
MATLAB
8
star
40

c-plus-plus

C++
C++
7
star
41

HPC

高性能计算HPC(High Performance Computing)
C++
7
star
42

paper-journal

6
star
43

How-to-do-Research

如何做研究
6
star
44

WebGL

WebGL(全写Web Graphics Library)是一种3D绘图协议,可利用canvas,three.js,ECharts进行3D动态绘制,下为学习代码
5
star
45

IoT_Lab

IoT(物联网)实验 -各类传感器采集实验 | 重庆邮电大学
C
5
star
46

tensorrt-plugin

实现TensorRT自定义插件(plugin)
Cuda
5
star
47

pointnet-simple

pointnet简易实现,入门学习分享
Python
5
star
48

tensorrt-notes

官方tensorrt备注笔记
C++
5
star
49

MAC-advice

苹果电脑 MACBook的相关使用说明,疑难杂症
4
star
50

TensorFlow

TensorFlow1.14和TensorFlow2x的学习代码('py35)
Jupyter Notebook
4
star
51

tensorflow-minist

TensorFlow与Flask结合打造手写体数字识别 | 学习网站:
JavaScript
3
star
52

jetson-TX2

Something about Jetson TX1/TX2.
3
star
53

ros2_python

Python implementation of ROS2 | python实现ros2
Python
3
star
54

query_analysis

自然语言处理(NLP) 语句抽取
Python
3
star
55

Jupyter-Notebook

Jupyter Notebook使用
Jupyter Notebook
2
star
56

pointnet2_pytorch

pointnet和pointnet++的pytorch实现
Python
2
star
57

react-study

React学习和开发
JavaScript
2
star
58

CQUPT_Course

重庆邮电大学课程资料
2
star
59

new-technique

新技术持续追踪中(人工智能,云计算,大数据,区块链... ...)
2
star
60

V2X

实现车与X(人、车、路、后台等)智能信息的交换共享。
2
star
61

ranking-list

数据!important | 各种排行,榜单数据汇总 数据为王的时代 Data
2
star
62

machine-learning-algorithms

机器学习常见算法(SVM等)
2
star
63

Gan

生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。
2
star
64

IoT2

物联网综合实验二(2018年秋 | 重庆邮电大学·物联网工程
Batchfile
2
star
65

hcq-AM

Visual Effects为“视觉效果 ,special-effects,About Myself,自我介绍
Vue
2
star
66

AI-college-course

大学相关课程总结
2
star
67

go-learning

go语言学习 适合分布式开发,高并发,微服务
Go
2
star
68

jenkins

基于Jenkins的自动化工作流搭建的过程,搭建完这套工作流,我们只需要在本地发起一个git提交,剩下的单元测试,打包构建,代码部署,邮件提醒等功能全部自动化完成,让持续集成、持续交付、持续部署变得简单易操作,真正解决人工构建部署的诸多问题。
2
star
69

2018-tencent-ad-competition

2018腾讯广告算法大赛
1
star
70

Django-backend

Django web服务端(后端)开发学习
Python
1
star
71

system-design-iot

物联网系统设计(2018秋)
Assembly
1
star
72

LeetCode

LeetCode/剑指offer刷题
C++
1
star
73

MiniGame

微信小游戏
1
star
74

VR-AR

虚拟现实(VR)/增强现实(AR)
1
star
75

shell

shell命令
Shell
1
star
76

BlockChain

比特币/区块链(BlockChain)
1
star
77

JavaSqlConnection

Java连接MySQL数据库
Java
1
star
78

quantitative-trading

量化交易投资(python3实现各类算法)
1
star
79

Paddle

百度飞桨深度学习框架
1
star
80

good-video

励志 | 视野| 知识| 自己看过的好的视频推荐
1
star
81

3D-Datasets

点云数据集汇总 介绍 | 代码
1
star
82

2018-internship-summer

【学校实习】嵌入式GPRS开发和Android开发
1
star
83

IoT

物联网相关
1
star
84

vue-element-blink

博灵(Blink)科技Web
Vue
1
star
85

Voice-Control-System-IoT2

智能家居语音控制系统(大三下物联网实验课2)
HTML
1
star
86

HTML5

JavaScript
1
star
87

intelligent-greenhouse

物联网实验(监控 2018(秋))
C
1
star
88

2018-codeM

2018美团CodeM编程大赛
1
star
89

contiki-operation

contiki基础学习,开发 物联网(IoT)
C
1
star
90

algorithm-and-data-structure-theory

算法与数据结构(理论)
1
star
91

HuangCongQing.github.io

myself blog
HTML
1
star
92

wx_calendar

自己做的微信小程序-日历,可作为插件使用
JavaScript
1
star
93

DeeCamp

DeeCamp笔试题
Python
1
star
94

nlp

自然语言处理,基础,demo
Jupyter Notebook
1
star
95

github-repo

github上star的好项目
1
star
96

Transformer

Transformer学习记录
Python
1
star
97

Data-Preprocessing

数据预处理
Python
1
star