• Stars
    star
    123
  • Rank 290,145 (Top 6 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

⚡⚡⚡NVIDIA-阿里2021 TRT比赛 `二等奖` 代码提交 团队:美迪康 AI Lab 🚀🚀🚀

TensorRT for DETR

美迪康AI Lab

🎉🎉 美迪康AI Lab在2022 TensorRT Transformer模型优化大赛,获得了 一等奖,我们连同该项目一起迁移到:https://github.com/TRT2022

🎉 🎉🎉 在本次比赛中,该项目获得了 二等奖 🎉🎉🎉

🎉 🎉🎉 https://github.com/NVIDIA/trt-samples-for-hackathon-cn/blob/master/hackathon/TRT-Hackathon-2021-summary.md 🎉🎉🎉

0. 环境配置

  • TensorRT Docker镜像环境:nvcr.io/nvidia/tensorrt:21.03-py3(TensorRT-7.2.2.3),需要Host中安装好Docker和Nvidia-Docker2和版本为Driver Version: 460.32.03的显卡驱动.
  • 在Docker镜像内需要安装相应的Python库,可以在项目下执行pip3 install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com进行安装.
  • 显卡类型:Tesla T4 (16G显存).
  • CUDA 11.2, cuDNN-8.1.
  • 系统信息为:Linux version 4.15.0-139-generic (buildd@lgw01-amd64-035) (gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)) #143-Ubuntu SMP Tue Mar 16 01:30:17 UTC 2021.

项目结构及说明

.
├── model  # DETR模型相关的python代码(主要来源https://github.com/facebookresearch/detr)
│   ├── README.md
│   ├── __init__.py
│   ├── backbone.py  # backbone resnet50
│   ├── box_ops.py  
│   ├── detr.py     # DETR model build
│   ├── hubconf.py
│   ├── matcher.py
│   ├── misc.py
│   ├── position_encoding.py  # position_encoding,支持sine和自学习,默认是sine
│   ├── segmentation.py      # 分割的模型的build
│   └── transformer.py   # transformer的encoder和decoder包括多头的自注意力,Skip, FFN
|
├── trt_util  # TensorRT相关的辅助方法
│    ├── __init__.py
│    ├── calibrator.py   # INT8量化的calibrator
│    ├── common.py #host与device数据交互,TensorRT序列化engine及调用(支持FP32,FP16,INT8),Dynamic shape序列化engine及调用(支持FP32,FP16,INT8)
│    ├── plot_box.py # 画出detr推断预测的box
│    ├── process_img.py # detr图像预处理,支持numpy,torchvision, cupy
│    └── trt_lite.py  # tensorrt性能测试辅助方法,基于https://github.com/NVIDIA/trt-samples-for-hackathon-cn/blob/master/python/修改
|
├── calib_train_image   # INT8量化的数据约30660张, 开源代码该部分内容被删除
│   ├── A_57b26b46_2e1e_11eb_9d64_00d861c69d42.jpg
│   ├── ... ...
│   └── N9_50667548_2e21_11eb_ac9b_00d861c69d42.jpg
|
├── test   # 性能测试需要的测试图像约1000张,开源代码该部分内容被删除
│   ├── test_c6d6ecec_2fd1_11eb_b773_00d861c69d42.jpg
│   ├── ... ...
│   └── test_d4c4ea34_2fd1_11eb_9f0e_00d861c69d42.jpg
|
├── checkpoint  # DETR Pytorch 模型,开源代码该部分仅提供模型下载链接
│   ├── detr_resnet50.pth
│   └── log.txt
├── pic  # README 静态资源文件
|
├── detr_pth2onnx.py  # pytorch 转onnx支持static,dynamic shape, btached, onnx check, onnx-simplifier, onnx-graphsurgeon
├── generate_batch_plan.py  # 生成batched static tensorrt 序列化engine文件,支持FP32,FP16,任意batch size
├── inference_detr_onnx.py   # onnx runtime模型推断,支持static,dynamic shape,用于验证onnx的正确性
├── inference_detr_trt.py   # tensorrt模型推断,支持,static,dynamic shape,FP32,FP16,INT8并检验engine是否存在,不存在调用序列化程序
├── performance_accuracy_detr.py  # TensorRT识别精度的计算和可视化
├── performance_time_detr.py      # TensorRT benchmark的计算和可视化
├── trt_int8_quant.py  # INT8量化,并生成量化模型的engine和cache文件
|
├── requirements.txt   # Python package list
├── LICENSE     
└── README.md

# 说明:
# 1. README提供过程中用到的Linux 相关命令,比如 trtexec, polygraphy, Nsight Systems的使用
# 2. 用到的模型文件包括.pth,.onnx,.plan文件在README中提供百度云盘的下载地址
# 3. 项目过程中产生的log文件比如,测试benchmark生成的数据,序列化engine过程中的日志,polygraphy日志,Nsight Systems生成UI文件均在README中提供百度云盘下载地址

1.Pytorch checkpoint to ONNX

# pytorch to onnx
$ python3 detr_pth2onnx.py -h

# batch_size=1, static
# 在项目下生成detr.onnx和detr_sim.onnx(simplify后的onnx)
$ python3 detr_pth2onnx.py --model_dir ./checkpoint/detr_resnet50.pth  --check --onnx_dir ./detr.onnx

# dynamic shape
# 在项目下生成detr_dynamic.onnx和detr_dynamic_sim.onnx
$ python3 detr_pth2onnx.py --model_dir ./checkpoint/detr_resnet50.pth  --check --onnx_dir ./detr_dynamic.onnx --dynamic_axes

# batch_size=n, static
# 生成./output/detr_batch_{n}.onnx和output/detr_batch_{n}_sim.onnx
$ python3 detr_pth2onnx.py --model_dir ./checkpoint/detr_resnet50.pth  --check --onnx_dir ./output/detr_batch_2.onnx --batch_size=2

simplify的其他方式

# onnx-simplifier
# static
$ python3 -m onnxsim detr.onnx detr_sim.onnx
# dynamic
$ python3 -m onnxsim detr_dynamic.onnx detr_dynamic_sim.onnx --input-shape "inputs:1,3,800,800"  --dynamic-input-shape

onnxruntime测试onnx模型

$ python3 inference_detr_onnx.py

注意:上述过程生成的detr_sim.onnx文件序列化engine后,TensorRT推断结果全部为0!

# 需要onnx-graphsurgeon做如下修改 (该代码导师提供)
import onnx
import onnx_graphsurgeon as gs

graph = gs.import_onnx(onnx.load("./detr_sim.onnx"))
for node in graph.nodes:
    if node.name == "Gather_2682":
        print(node.inputs[1])
        node.inputs[1].values = np.int64(5)
        print(node.inputs[1])
    elif node.name == "Gather_2684":
        print(node.inputs[1])
        node.inputs[1].values = np.int64(5)
        print(node.inputs[1])
        
onnx.save(gs.export_onnx(graph),'changed.onnx')

2.TensorRT Inference in FP32 or FP16 Mode

生成TensorRT序列化engine文件并调用,有两种方式:

  • 1.使用python实现
# 提供build engine和反序列化engine进行推断
# inference_detr_trt.py支持FP32,FP16的build engine和engine的推断,同时支持static shape和Dynamic shape的推断,前处理,后处理和结果可视化,支持INT8量化后engine的推断,包括static shape, dynamic shape及前处理后处理和结果可视化

# static shape
# FP32
$ python3 inference_detr_trt.py -h
$ python3 inference_detr_trt.py --model_dir ./detr_sim.onnx --engine_dir ./detr.plan --image_dir ./test

# FP16
$ python3 inference_detr_trt.py --model_dir ./detr_sim.onnx --engine_dir ./detr_fp16.plan --image_dir ./test --fp16

# INT8
$ python3 inference_detr_trt.py --model_dir ./detr_sim.onnx --engine_dir ./detr_int8.plan --image_dir ./test --int8

# dynamic shape 
$ python3 inference_detr_trt.py --model_dir ./detr_sim.onnx --engine_dir ./detr.plan --image_dir ./test --dynamic --batch_size=8

# 生成batch的engine
$ python3 generate_batch_plan.py --model_dir ./output/detr_batch_{n}_sim.onnx --engine_dir ./output/detr_batch_{n}_fp16.plan --batch_size={n} --fp16
# eg
$ python3 generate_batch_plan.py --model_dir ./output/detr_batch_2_sim.onnx --engine_dir ./output/detr_batch_2.plan --batch_size=2
$ python3 generate_batch_plan.py --model_dir ./output/detr_batch_2_sim.onnx --engine_dir ./output/detr_batch_2_fp16.plan --batch_size=2 --fp16

TensorRT Inference的结果Demo(上trt fp32,下trt fp16):

  • 2.使用trtexec
# static shape
trtexec --verbose --onnx=detr.onnx --saveEngine=detr.plan   # error
trtexec --verbose --onnx=detr_sim.onnx --saveEngine=detr.plan

trtexec --verbose --onnx=detr_sim.onnx --saveEngine=detr.plan --fp16

# dynamic shape (error)
# FP32
trtexec --verbose --onnx=detr_dynamic_sim.onnx --saveEngine=detr_dynamic.plan --optShapes=input:1x3x800x800 --minShapes=input:1x3x800x800 --maxShapes=input:16x3x800x800  --workspace=10240   

# FP16
trtexec --verbose --onnx=detr_dynamic_sim.onnx --saveEngine=detr_dynamic_fp16.plan --optShapes=input:1x3x800x800 --minShapes=input:1x3x800x800 --maxShapes=input:64x3x800x800 --fp16   

该过程遇到的问题:

  1. 在tag为20.12-py 的TensorRT镜像中,onnx转trt engine文件时出现了Myelin Error (fig1,fig2)[该问题由导师协助解决,将TensorRT的Docker镜像的tag换成21.03-py]
  2. 如果不做onnx的simplify,无法序列化engine,报错如fig3 [解决办法是进行onnx-simplifier]
  3. Dynamic Shape可以正常通过torch.onnx.export获得并且在onnxruntime下可正常调用,但是在序列化engine时,无法正常工作(我们提供了dynamic shape的序列化方法和序列化后engine的调用方法,但是遗憾无法序列化dynamic时的engine),序列化engine的错误信息如fig4.[该问题现在依然没有解决,未来的工作希望基于TensorRT API重新搭建网络或Plugin添加不支持的层]

bug1:低版本tensorrt问题

fig1:Myelin Error

bug1对应结点

fig2: Myeline Error 对应ONNX结点

bug3.png

fig3:onnx不做simplify无法序列化

bug4.png

fig4:detr_dynamic_sim.onnx无法序列化engine,进而dynamic shape代码部分完成后无法进行dynamic shape的测试

3.TensorRT Inference Time(IT) and Mean Value of Relative Error(MVRE)

# Inference Time(IT)
$ python3 performance_time_detr.py

# Mean value of relative error (MVRE)
$ python3 performance_accuracy_detr.py

# Nsight Systems
$ nsys profile -o nsight_detr_out python3 performance_time_detr.py
$ nsys-ui nsight_detr_out
  • benchmark的计算中关于Latency和Throughput的计算,设及的nRound为1000次,该统计保证预处理和后处理相同的条件下仅包含模型加速推断部分的统计
  • benchmark的计算中关于平均相对误差的计算采用预测Score和预测Box分开分别计算,使用1000张测试图片进行测试

性能对比表格

性能对比

lantencyvsthroughput

Latency vs Throughput

识别精度

测试1000张图像,平均相对精度基本满足条件,正常的FP32在1e-6,FP16在1e-3数量级

该过程遇到的问题:

4.关于平均相对精度的统计中发现,TensorRT序列化的engine在推断后的结果全部为0(使用polygraphy run detr_sim.onnx --trt --onnxrt --onnx-outputs mark all --trt-outputs mark all查看原因,得到错误信息如fig5,fig6在第1775个节点后就出现了错误;我们是正常把detr_sim.onnx序列换成功了,但是序列化的engine的识别结果不正确)[可能是TensorRT ONNX parser权重解析的一个BUG,这个问题已经在导师的帮助下解决,解决方式参考[第一节](### 1.Pytorch checkpoint to ONNX ),基于onnx-graphsurgeon修改了结点的信息] BUG

bug2.png

fig5: 通过polygraphy 查看信息

bug2_onnx.png

fig6: 定位到polygraphy 找到的错误结点

4.INT8 量化

  1. INT8量化序列化INT8 Engine文件
# generate int8 model
$ python3 trt_int8_quant.py -h

$ python3 trt_int8_quant.py --onnx_model_path ./detr_sim.onnx --engine_model_path ./detr_int8.plan --calib_img_dir ./calib_train_image --calibration_table ./detr_calibration.cache --int8

使用约30660张训练图像进行INT8量化.

该过程遇到的问题:

5.失败了,cache文件没有出来! 检查代码并没有发现什么异常,序列化的engine出来了(感觉并没有INT8量化),并没有cache文件出来。[可能TensorRT的BUG, 原因(导师解释):因为onnx模型中有where op,这个where op只支持myelin作为backend,且没有int8实现,所以就直接跳过int8 calibration了,导师提供的解决办法是写一个plugin来替代where op,即使这样也不一定就能够进行int8 calibration] BUG

  1. TesorRT Inference in INT8
$ python3 inference_detr_trt.py -h
$ python3 inference_detr_trt.py --model_dir ./detr_sim.onnx --engine_dir ./detr_int8.plan --int8

提供了INT8推理引擎的推断代码.

5.Profile每一层的耗时

$ trtexec --verbose --onnx=detr_sim.onnx --saveEngine=detr_batch1.plan 
$ trtexec --loadEngine=detr_batch1.plan --batch=1
$ trtexec --loadEngine=detr_batch1.plan --batch=1 --dumpProfile |& tee profile.txt
# 每一层的耗时,因为层数比较多,这里仅列出耗时比较长一些层的例子和耗时比较少的一些层的例子

# 耗时比较多的层的例子:
--------------------------------------------------------------------------
Layer                               Time (ms)      Avg. Time (ms)   Time %
---------------------------------------------------------------------------
Conv_107 + Relu_110                 53.99           0.6427          1.8
Conv_123 + Add_126 + Relu_127       41.26           0.4912          1.4
Conv_298                            21.66           0.2579          0.7

上述类型的层有很多个
---------------------------------------------------------------------------

# 耗时比较少的层的例子
--------------------------------------------------------------------------
Layer                               Time (ms)      Avg. Time (ms)   Time %
---------------------------------------------------------------------------
MatMul_487                          3.29           0.0392           0.1
Add_488                             1.51           0.0179           0.1
ReduceMean_546                      0.95           0.0113           0.0
Sub_547                             1.22           0.0145           0.0
Add_690 + Relu_691                  4.71           0.0560           0.2

上述类型的层有很多个
---------------------------------------------------------------------------

# 结论:

1. DETR的backbone部分主要涉及ResNet-50是主要TensorRT inference的耗时的地方
2. transformer的encoder和decoder耗时较少

6.未来的工作

  1. 在ONNX序列化engine的过程中,发现不做onnx-simplifer序列化engine是有错误的,错误可以参考fig3,这可能是因为其中的一些op tensorRT目前还不支持,未来打算基于DETR网络结构通过TensorRT API搭建网络,实现前向推理加速;

  2. INT8量化无法生成cache文件(写一个plugin来替代where op, 看是否可以解决INT8量化的问题);

  3. Dynamic shape的ONNX文件进行onnx-simplifier后,依然无法序列化engine,其错误信息和fig4相同,原因是onnx-simplifier并没有对dynamic shape的onnx起到任何简化作用,dynamic shape的onnx模型文件的op和1中面临的问题相同,下一步的工作就是基于TensorRT API或Plugin重新调整网络。

7.连接地址

  1. 项目模型下载地址包括.pth,.onnx,.plan模型文件: 链接:https://pan.baidu.com/s/1IsHHfFi5zphpbfGTmvPIag 提取码:detr
  2. 项目中生成的日志文件下载地址: 链接:https://pan.baidu.com/s/1rvG2ApC67Jt61t3ISZA3Dg 提取码:logs
  3. DETR参考官方REPO: https://github.com/facebookresearch/detr
  4. DETR Paper: https://arxiv.org/abs/2005.12872v1
  5. 项目中参考的代码地址1:https://github.com/NVIDIA/trt-samples-for-hackathon-cn/blob/master/python/
  6. 项目中参考的代码地址2:https://github.com/NVIDIA/TensorRT

8.提交的TensorRT的BUG

  1. INT8量化,cache文件没有出来, 检查代码并没有发现什么异常,序列化的engine出来了(感觉并没有INT8量化),并没有cache文件出来。因为onnx模型中有where op,这个where op只支持myelin作为backend,且没有INT8实现,所以就直接跳过int8 calibration ;
  2. .关于平均相对精度的统计中发现,TensorRT序列化的engine在推断后的结果全部为0(使用polygraphy run detr_sim.onnx --trt --onnxrt --onnx-outputs mark all --trt-outputs mark all查看原因,得到错误信息如fig5,fig6在第1775个节点后就出现了错误;我们是正常把detr_sim.onnx序列换成功了,但是序列化的engine的识别结果不正确)(是TensorRT ONNX parser参数解析的一个BUG,这个问题已经在导师的帮助下解决,解决方式参考[第一节](### 1.Pytorch checkpoint to ONNX ),基于onnx-graphsurgeon修改了结点的信息)

9.TensorRT C++实现

  1. cmake
cd cpp
cmake .
root@8d80a7f44e59:/workspace/05_detr# cmake .
-- The C compiler identification is GNU 9.3.0
-- The CXX compiler identification is GNU 9.3.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Found OpenCV: /workspace/opencv-4.5.2/build (found version "4.5.2") 
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE  
-- Found CUDA: /usr/local/cuda (found version "11.2") 
-- cmake success!!!  DETR by xj
-- Configuring done
-- Generating done
-- Build files have been written to: /workspace/05_detr

  1. make
make
root@8d80a7f44e59:/workspace/05_detr# make
Scanning dependencies of target detr
[ 50%] Building CXX object CMakeFiles/detr.dir/src/main.cc.o
[100%] Linking CXX executable detr
[100%] Built target detr

  1. test
./detr ./test_img/test.jpg true

# true 先解析ONNX模型,然后序列化Engine
# false 直接从本地Engine文件反序列化

More Repositories

1

YOLO-v5

🎨 Pytorch YOLO v5 训练自己的数据集超详细教程!!! 🎨 (提供PDF训练教程下载)
Jupyter Notebook
750
star
2

vehicle-license-plate-recognition

🔥 🔥🔥基于Python的车牌检测和识别系统:
Python
608
star
3

YOLO-V3-Tensorflow

👷 👷👷 YOLO V3(Tensorflow 1.x) 安全帽 识别 | 提供数据集下载和与预训练模型
Python
213
star
4

CNN-paper2

🎨 🎨 深度学习 卷积神经网络教程 :图像识别,目标检测,语义分割,实例分割,人脸识别,神经风格转换,GAN等🎨🎨 https://dataxujing.github.io/CNN-paper2/
133
star
5

TensorRT_CV

🚀🚀🚀NVIDIA TensorRT 加速推断教程!
CSS
127
star
6

YOLOv8

🔥 Official YOLOv8模型训练和部署
Python
122
star
7

ScaledYOLOv4

🔥🔥🔥 Scaled-YOLOv4训练自己的数据集详细教程PDF,关于paper解读请联系小编获取PDF文档
Python
72
star
8

Faster-R-CNN-Keras

🚧🚧🚧 Faster R-CNN实现安防中安全帽佩戴目标检测
Python
65
star
9

xiaoX

flask+seq2seq【TensorFlow1.0, Pytorch】 🎨 🎨 在线聊天机器人 https://mp.weixin.qq.com/s/VpiAmVSTin3ALA8MnzhCJA 或 https://ask.hellobi.com/blog/python_shequ/14486
Python
61
star
10

yolact_pytorch

🔥 🔥 🔥Train Your Own DataSet for YOLACT and YOLACT++ Instance Segmentation Model!!!
Python
56
star
11

DIoU_YOLO_V3

📈📈📈【口罩佩戴检测数据训练 | 开源口罩检测数据集和预训练模型】Train D/CIoU_YOLO_V3 by darknet for object detection
Jupyter Notebook
55
star
12

YOLOR-

🔥🔥🔥 YOLOR 训练自己的数据集,详细教程
Python
44
star
13

detr_transformer

transformer used in object detection [DETR训练自己的数据集]
Python
39
star
14

YOLOX-

🔥 🔥 🔥 YOLOX 训练自己的数据集 TensorRT加速 详细教程
Python
37
star
15

OpenCV-Flask

🐛 🐛 Opencv视频流传输到网页浏览器并做目标检测 🐛 🐛
CSS
36
star
16

CornerNet-Lite-Pytorch

🚨🚨🚨 CornerNet:基于虚拟仿真环境下的自动驾驶交通标志识别
Python
34
star
17

YOLOv7

🔥🔥🔥 Official YOLOv7训练自己的数据集并实现端到端的TensorRT模型加速推断
Python
33
star
18

create_apps_in_kivy

🔥🔥🔥 Kivy开发教程,附PDF文档书籍https://mp.weixin.qq.com/s/YKf8IzO76kjIMD5xMhEz-g
HTML
30
star
19

EfficientDet_pytorch

🎨 🎨 EfficientDet训练水下目标检测数据集🎨🎨
Python
30
star
20

ncnn_android_yolov8

QT+NCNN 小米手机运行YOLOv8s
Python
29
star
21

Pytorch_YOLO-v4

🎨 Pytorch YOLO v4 训练自己的数据集超详细教程!!! 🎨(提供PDF训练教程下载)
Python
27
star
22

R_oop

🎨 R语言面向对象编程教程 https://dataxujing.github.io/R_oop/
CSS
27
star
23

NLP-paper

🎨 🎨NLP 自然语言处理教程 🎨🎨 https://dataxujing.github.io/NLP-paper/
26
star
24

YOLOv6

🌀 🌀 手摸手 美团 YOLOv6模型训练和TensorRT端到端部署方案教程
Python
23
star
25

tensorflow-serving-Wechat

🎨🎨 tensorflow serving and deep model online https://dataxujing.github.io/tensorflow-serving-Wechat/?transition=convex#/
JavaScript
19
star
26

Qt_NCNN_NanoDet

🔥🔥🔥 QT+NCNN实现安卓系统下的AI计算
C++
17
star
27

lanenet-tensorrt

🔥 🔥 🔥 车道线检测Lanenet TensorRT加速C++实现
C++
16
star
28

ExtremeNet-Pytorch

🐛🐛🐛 Train and inference ExtremeNet in Pytorch! Support Bounding Box and Instance Segmentation train data!!
Python
12
star
29

Bert_TensorRT

🐛 Bert TensorRT模型加速部署
Python
10
star
30

Cascade_RCNN_mmdetection

🐛🐛🐛Cascade RCNN 的训练基于mmdetection
Python
10
star
31

boston_model

🎨 🎨 https://mp.weixin.qq.com/s/7t0e_hfyDh1b2GPVlzXIMg 或 https://yq.aliyun.com/articles/636272
Python
10
star
32

ncnn_android_yolov6

ncnn qt yolov6
C++
10
star
33

ATSS_train_your_own_data

🔥🔥 用ATSS训练自己的目标检测模型!! 超详细教程和PDF教程下载!!!
Python
9
star
34

lane-detect-opencv

opencv车道线检测
Python
7
star
35

yolact_tensorrt_api

🔥 我的NVIDIA开发之旅--实例分割模型YOLACT的TensorRT API模型搭建与推断加速实战
7
star
36

tensorrt_deeposrt_yolov5

C++
6
star
37

R_online

https://dataxujing.github.io/R_online/
CSS
6
star
38

gcForest_r

🎨 🎨 R package for gcForest [ https://CRAN.R-project.org/package=gcForest ][ https://github.com/cran/gcForest ]
Python
6
star
39

Ricetl

身份证信息提取Gui R包,Ricetl()翻转你的身份证号: https://cran.r-project.org/web/packages/Ricetl/vignettes/Ricetl-doc.html
R
6
star
40

TensorRT-LLM-ChatGLM3

🔥 大模型部署实战:TensorRT-LLM, Triton Inference Server, vLLM
Python
6
star
41

DCGAN_pytorch

🎨🎨基于PyTorch的生成对抗网络DCGAN的训练
Python
5
star
42

MobileNet_V3_pytorch

A Pytorch implementation of MobileNet V3!
Python
5
star
43

dataxujing.github.io

🔥 🔥 🔥 xujing's home page https://dataxujing.github.io/
CSS
4
star
44

Mask-RCNN-TensorRT

🐛 TensorRT 实现Mask RCNN推断
C++
4
star
45

PNASNet_pytorch

🐛 Pytorch实现PNASNet的训练与测试
Python
4
star
46

plotbox2

🔥🔥🔥A python package for plot bounding box in object detection
Python
4
star
47

SSD-Tensorflow

🎨🎨🎨 SSD-Tensorflow目标检测基于医学影像的消化内镜活检钳
Python
3
star
48

libtorch_tutorials

🐛🐛🐛libtorch非官方教程🐛🐛🐛
3
star
49

Quick-Demo-from-Pytorch-to-Tensort-cpp

A simple and quick example shows how to convert the model of Pytoch to ONNX, and then deploy it with tensorrt in C++
C++
3
star
50

django-qr

Django web实现各种二维码生成
HTML
3
star
51

AI-Face-changing-in-Peking-Opera-

京剧换脸
Python
3
star
52

RetinaNet-Keras

✏️✏️✏️ RetinaNet目标检测模型训练和推断
Python
2
star
53

AIGC-paper

AIGC learning
2
star
54

VOT_paper

视觉目标跟踪(VOT)及ReID教程: https://dataxujing.github.io/VOT_paper/#/
2
star
55

ICSC

A R package for Inter-credit.
R
2
star
56

Mask_RCNN_keras

🐛🐛 Keras训练Mask RCNN教程,包括训练集构建,配置文件修改,训练,推断
Python
2
star
57

xcamera-android

kivy xcamera for android
Python
2
star
58

IncomeAnalysis

网络爬虫+数据可视化 🎨 🎨 https://dataxujing.github.io/IncomeAnalysis/
HTML
2
star
59

django2-ueditor

🔥🔥🔥Django2中集成xadmin和ueditor
Python
2
star
60

Co-DETR-TensorRT

🔥 全网首发,mmdetection Co-DETR TensorRT端到端推理加速
C++
2
star
61

htmlwidgets_CN

🎨🎨 https://dataxujing.github.io/htmlwidgets_CN/
HTML
2
star
62

deepfakes

AI 图片视频换脸实现
2
star
63

DataXujing

1
star
64

Word_segment_CN

🎨 中文分词算法小结
Python
1
star
65

SpotM2-Jetson

🐶 【NVIDIA Jetson Edge AI开发者大赛】-- 美迪康 AI Lab团队代码提交
Python
1
star
66

idprep

A R packages to transmit ID number
R
1
star
67

IRSModel_py_shiny

IRSModel with Py and shiny
R
1
star
68

CNN-paper

🎨 CNN model learn : **该项目已停止更新**,最新项目请到链接:https://github.com/DataXujing/CNN-paper2
HTML
1
star
69

jsonr

A package about json string and R
R
1
star
70

detmetric

Python
1
star
71

Icics

A Python package for Inter-credit
Python
1
star
72

OpenCV_Multithreaded

🎨 🎨 🎨 多线程解决非实时深度学习模型与OpenCV结合的卡顿问题
Python
1
star
73

Install-R-rstudio-server-shiny-server-git

ubuntu 16.04 install some solft about open source R by XuJing
1
star
74

LN0SCIs3

A R package that used to compute simultaneous confidence intervals https://cran.r-project.org/web/packages/LN0SCIs/index.html 或 https://cran.r-project.org/web/packages/LN0SCIs/vignettes/LN0SCIs-tutorial.html
R
1
star
75

LN0SCIs

A R and Python Packages https://pypi.org/project/LN0SCIs/ and https://cran.r-project.org/web/packages/LN0SCIs/index.html
R
1
star