• Stars
    star
    138
  • Rank 264,508 (Top 6 %)
  • Language
    Python
  • Created almost 3 years ago
  • Updated 9 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

SimCSE有监督与无监督实验复现

SimCSE复现

项目描述

微信公众号【YeungNLP】文章:SimCSE:简单有效的句向量对比学习方法

SimCSE是一种简单但是很巧妙的NLP对比学习方法,创新性地引入Dropout的方式,对样本添加噪声,从而达到对正样本增强的目的。 该框架的训练目的为:对于batch中的每个样本,拉近其与正样本之间的距离,拉远其与负样本之间的距离,使得模型能够在大规模无监督语料(也可以使用有监督的语料)中学习到文本相似关系。 详见论文:Simple Contrastive Learning of Sentence EmbeddingsSimCSE官方代码仓库

本项目使用pytorch+transformers复现了SimCSE论文中的有监督训练和无监督训练方法,并且在STS-B数据集上进行消融实验,评价指标为Spearman相关系数,预训练模型为Bert-base-uncased, 验证了SimCSE的有效性。在STS-B数据集上,有监督训练和无监督训练的复现效果如下表。

在无监督训练中,dropout=0.1时,复现效果比原文略差,但也比较接近。当dropout=0.2时,复现效果比原文略高。 但在有监督训练中,不知是否由于batch size过小(原论文使用512),复现效果与论文的效果相差较远,后续会进行排查。

训练方法 learning rate batch size dropout Spearman’s correlation
原论文 无监督 3e-5 64 0.1 0.763
复现 无监督 3e-5 64 0.2 0.771
复现 无监督 3e-5 64 0.1 0.748
原论文 有监督 5e-5 512 0.1 0.816
复现 有监督 5e-5 64 0.1 0.764

运行环境

python==3.6、transformers==3.1.0、torch==1.6.0

项目结构

  • data:存放训练数据
    • stsbenchmark:STS-B数据集
      • sts-dev.csv:STS-B验证集
      • sts-test.csv:STS-B验测试集
    • nli_for_simcse.csv:数量275601为的NLI数据集
    • wiki1m_for_simcse.txt:维基百科上获取的100w的文本
  • output:输出目录
  • pretrain_model:预训练模型存放位置
  • script:脚本存放位置。
  • dataset.py
  • model.py:模型代码,包含有监督和无监督损失函数的计算方式
  • train.py:训练代码

使用方法

Quick Start

下载训练数据:

bash script/download_nli.sh
bash script/download_wiki.sh

无监督训练,运行脚本

bash script/run_unsup_train.sh

有监督训练,运行脚本

bash script/run_sup_train.sh

实验

无监督训练

从前四条实验数据中可以看到,较大的batch size在一定程度上可以增加模型的泛化性。

dropout为0.2的时候,训练效果比0.1与0.3更好,有可能dropout=0.1加入的噪声过小,而dropout=0.3加入的噪声过大,增强得到的样本与原始样本差异较大。

learning rate batch size dropout 在哪一步得到best checkpoint 验证集上的得分 测试集上的得分
3e-5 256 0.1 6000 0.800 0.761
3e-5 128 0.1 4200 0.799 0.747
3e-5 64 0.1 10900 0.803 0.748
3e-5 32 0.1 21300 0.787 0.714
3e-5 64 0.2 11200 0.811 0.771
3e-5 64 0.3 6300 0.781 0.745
1e-5 64 0.1 16400 0.798 0.751

有监督训练

有监督实验的复现结果未达到预期,超参数相同时,在验证集上的得分略高于无监督,但是在测试集上,得分基本没有差异。增大有监督训练的学习率,有监督的训练的得分略高于无监督训练, 但还是与论文声称的0.816相差较远,原论文使用512的batch size, 不知是否由于batch size的设置有关,后续会对有监督的训练代码进一步排查。

不过从训练曲线可以看到,有监督训练的收敛速度明显快于无监督训练,这也符合我们的认知。

训练方法 learning rate batch size dropout 在哪一步得到best checkpoint 验证集上的得分 测试集上的得分
无监督 3e-5 64 0.1 10900 0.803 0.748
有监督 3e-5 64 0.1 200 0.810 0.748
有监督 5e-5 64 0.1 2300 0.809 0.764
有监督 3e-5 32 0.1 200 0.808 0.743
有监督 5e-5 32 0.1 200 0.806 0.746

无监督训练过程中,验证集得分的变化曲线: avatar

有监督训练过程中,验证集得分的变化曲线: avatar

REFERENCE

TODO

  • 排查有监督学习的效果不符合预期的原因

More Repositories

1

Firefly

Firefly: 大模型训练工具,支持训练Qwen2、Yi1.5、Phi-3、Llama3、Gemma、MiniCPM、Yi、Deepseek、Orion、Xverse、Mixtral-8x7B、Zephyr、Mistral、Baichuan2、Llma2、Llama、Qwen、Baichuan、ChatGLM2、InternLM、Ziya2、Vicuna、Bloom等大模型
Python
5,493
star
2

GPT2-chitchat

GPT2 for Chinese chitchat/用于中文闲聊的GPT2模型(实现了DialoGPT的MMI思想)
Python
2,972
star
3

CPM

Easy-to-use CPM for Chinese text generation(基于CPM的中文文本生成)
Python
525
star
4

Firefly-LLaMA2-Chinese

Firefly中文LLaMA-2大模型,支持增量预训练Baichuan2、Llama2、Llama、Falcon、Qwen、Baichuan、InternLM、Bloom等大模型
Python
390
star
5

CLIP-Chinese

中文CLIP预训练模型
Python
374
star
6

QQMusicSpider

基于Scrapy的QQ音乐爬虫(QQ Music Spider),爬取歌曲信息、歌词、精彩评论等,并且分享了QQ音乐中排名前6400名的内地和港台歌手的49万+的音乐语料
Python
310
star
7

LLMPruner

Python
282
star
8

ClipCap-Chinese

基于ClipCap的看图说话Image Caption模型
Python
267
star
9

LEBERT-NER-Chinese

基于词汇信息融合的中文NER模型
Python
160
star
10

LongQLoRA

LongQLoRA: Extent Context Length of LLMs Efficiently
Python
154
star
11

OFA-Chinese

transformers结构的中文OFA模型
Python
118
star
12

PAMAE

使用Python复现SIGKDD2017的PAMAE算法(并行k-medoids算法)/The Python implementation of SIGKDD 2017's PAMAE algorithm (parallel k-medoids algorithm)
Python
33
star
13

TankBattle

基于Netty的联机版坦克大战
Java
17
star
14

Shopee-Price-Match-Guarantee

对比学习 虾皮同款商品匹配
Python
13
star