• Stars
    star
    679
  • Rank 60,726 (Top 2 %)
  • Language
    R
  • License
    Other
  • Created over 5 years ago
  • Updated 7 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Easily install and load the tidymodels packages

tidymodels

R-CMD-check Codecov test coverage CRAN_Status_Badge Downloads lifecycle

Overview

tidymodels is a β€œmeta-package” for modeling and statistical analysis that shares the underlying design philosophy, grammar, and data structures of the tidyverse.

It includes a core set of packages that are loaded on startup:

  • broom takes the messy output of built-in functions in R, such as lm, nls, or t.test, and turns them into tidy data frames.

  • dials has tools to create and manage values of tuning parameters.

  • dplyr contains a grammar for data manipulation.

  • ggplot2 implements a grammar of graphics.

  • infer is a modern approach to statistical inference.

  • parsnip is a tidy, unified interface to creating models.

  • purrr is a functional programming toolkit.

  • recipes is a general data preprocessor with a modern interface. It can create model matrices that incorporate feature engineering, imputation, and other help tools.

  • rsample has infrastructure for resampling data so that models can be assessed and empirically validated.

  • tibble has a modern re-imagining of the data frame.

  • tune contains the functions to optimize model hyper-parameters.

  • workflows has methods to combine pre-processing steps and models into a single object.

  • yardstick contains tools for evaluating models (e.g.Β accuracy, RMSE, etc.).

A list of all tidymodels functions across different CRAN packages can be found at https://www.tidymodels.org/find/.

You can install the released version of tidymodels from CRAN with:

install.packages("tidymodels")

Install the development version from GitHub with:

# install.packages("pak")
pak::pak("tidymodels/tidymodels")

When loading the package, the versions and conflicts are listed:

library(tidymodels)
#> ── Attaching packages ───────────────────────────────── tidymodels 1.0.0.9000 ──
#> βœ” broom        1.0.4     βœ” recipes      1.0.6
#> βœ” dials        1.2.0     βœ” rsample      1.1.1
#> βœ” dplyr        1.1.2     βœ” tibble       3.2.1
#> βœ” ggplot2      3.4.2     βœ” tidyr        1.3.0
#> βœ” infer        1.0.4     βœ” tune         1.1.1
#> βœ” modeldata    1.1.0     βœ” workflows    1.1.3
#> βœ” parsnip      1.1.0     βœ” workflowsets 1.0.1
#> βœ” purrr        1.0.1     βœ” yardstick    1.2.0
#> ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
#> βœ– purrr::discard() masks scales::discard()
#> βœ– dplyr::filter()  masks stats::filter()
#> βœ– dplyr::lag()     masks stats::lag()
#> βœ– recipes::step()  masks stats::step()
#> β€’ Search for functions across packages at https://www.tidymodels.org/find/

Contributing

This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

More Repositories

1

broom

Convert statistical analysis objects from R into tidy format
R
1,383
star
2

infer

An R package for tidyverse-friendly statistical inference
R
688
star
3

corrr

Explore correlations in R
R
578
star
4

TMwR

Code and content for "Tidy Modeling with R"
RMarkdown
544
star
5

parsnip

A tidy unified interface to models
R
535
star
6

recipes

Pipeable steps for feature engineering and data preprocessing to prepare for modeling
R
498
star
7

yardstick

Tidy methods for measuring model performance
R
338
star
8

rsample

Classes and functions to create and summarize resampling objects
R
316
star
9

stacks

An R package for tidy stacked ensemble modeling
R
281
star
10

tidypredict

Run predictions inside the database
R
251
star
11

tune

Tools for tidy parameter tuning
R
224
star
12

workflows

Modeling Workflows
R
188
star
13

textrecipes

Extra recipes for Text Processing
R
150
star
14

embed

Extra recipes for predictor embeddings
R
138
star
15

themis

Extra recipes steps for dealing with unbalanced data
R
133
star
16

butcher

Reduce the size of model objects saved to disk
R
130
star
17

censored

Parsnip wrappers for survival models
R
115
star
18

dials

Tools for creating tuning parameter values
R
108
star
19

probably

Tools for post-processing class probability estimates
R
102
star
20

tidyposterior

Bayesian comparisons of models using resampled statistics
R
102
star
21

tidymodels.org-legacy

Legacy Source of tidymodels.org
HTML
101
star
22

aml-training

The most recent version of the Applied Machine Learning notes
HTML
101
star
23

hardhat

Construct Modeling Packages
R
98
star
24

tidyclust

A tidy unified interface to clustering models
R
93
star
25

workflowsets

Create a collection of modeling workflows
R
87
star
26

usemodels

Boilerplate Code for tidymodels
R
84
star
27

modeldb

Run models inside a database using R
R
77
star
28

multilevelmod

Parsnip wrappers for mixed-level and hierarchical models
R
70
star
29

workshops

Website and materials for tidymodels workshops
JavaScript
63
star
30

finetune

Additional functions for model tuning
R
61
star
31

spatialsample

Create and summarize spatial resampling objects πŸ—Ί
R
60
star
32

brulee

High-Level Modeling Functions with 'torch'
R
55
star
33

learntidymodels

Learn tidymodels with interactive learnr primers
R
54
star
34

applicable

Quantify extrapolation of new samples given a training set
R
42
star
35

model-implementation-principles

recommendations for creating R modeling packages
HTML
41
star
36

shinymodels

R
40
star
37

rules

parsnip extension for rule-based models
R
38
star
38

planning

Documents to plan and discuss future development
35
star
39

bonsai

parsnip wrappers for tree-based models
R
33
star
40

discrim

Wrappers for discriminant analysis and naive Bayes models for use with the parsnip package
R
27
star
41

poissonreg

parsnip wrappers for Poisson regression
R
22
star
42

baguette

parsnip Model Functions for Bagging
R
21
star
43

modeldata

Data Sets Used by tidymodels Packages
R
21
star
44

agua

Create and evaluate models using 'tidymodels' and 'h2o'
R
19
star
45

plsmod

Model Wrappers for Projection Methods
R
13
star
46

cloudstart

RStudio Cloud ☁️ resources to accompany tidymodels.org
12
star
47

extratests

Integration and other testing for tidymodels
R
11
star
48

tidymodels.org

Source of tidymodels.org
JavaScript
10
star
49

desirability2

Desirability Functions for Multiparameter Optimization
R
7
star
50

.github

GitHub contributing guidelines for tidymodels packages
4
star
51

modelenv

Provide Tools to Register Models for use in Tidymodels
R
3
star
52

survivalauc

What the Package Does (One Line, Title Case)
C
2
star
53

modeldatatoo

More Data Sets Useful for Modeling Examples
R
1
star