• Stars
    star
    140
  • Rank 261,473 (Top 6 %)
  • Language
    Python
  • License
    MIT License
  • Created over 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Datasets for data-driven deep reinforcement learning with PyBullet environments

format check test MIT Gitter

d4rl-pybullet

Datasets for Data-Driven Deep Reinforcement Learning with Pybullet environments. This work is intending to provide datasets for data-driven deep reinforcement learning with open-sourced bullet simulator, which encourages more people to join this community.

This repository is built on top of d4rl. However, currently, it is impossible to import d4rl without checking MuJoCo activation keys, which fails the program. Thus, d4rl_pybullet.offline_env is directly copied from d4rl repository.

install

$ pip install git+https://github.com/takuseno/d4rl-pybullet

usage

The API is mostly identical to the original d4rl.

import gym
import d4rl_pybullet

# dataset will be automatically downloaded into ~/.d4rl/datasets
env = gym.make('hopper-bullet-mixed-v0')

# interaction with its environment
env.reset()
env.step(env.action_space.sample())

# access to the dataset
dataset = env.get_dataset()
dataset['observations'] # observation data in N x dim_observation
dataset['actions'] # action data in N x dim_action
dataset['rewards'] # reward data in N x 1
dataset['terminals'] # terminal flags in N x 1 

available datasets

  • random denotes datasets sampled with a randomly initialized policy.
  • medium denotes datasets sampled with a medium-level policy.
  • mixed denotes datasets collected during policy training.
id task mean reward std reward max reward min reward samples
hopper-bullet-random-v0 HopperBulletEnv-v0 18.64 3.04 53.21 -8.58 1000000
hopper-bullet-medium-v0 HopperBulletEnv-v0 1078.36 325.52 1238.9569 220.23 1000000
hopper-bullet-mixed-v0 HopperBulletEnv-v0 139.08 147.62 1019.94 9.15 59345
halfcheetah-bullet-random-v0 HalfCheetahBulletEnv-v0 -1304.49 99.30 -945.29 -1518.58 1000000
halfcheetah-bullet-medium-v0 HalfCheetahBulletEnv-v0 787.35 104.31 844.91 -522.57 1000000
halfcheetah-bullet-mixed-v0 HalfCheetahBulletEnv-v0 453.12 498.19 801.02 -1428.22 178178
ant-bullet-random-v0 AntBulletEnv-v0 10.35 0.31 13.04 9.82 1000000
ant-bullet-medium-v0 AntBulletEnv-v0 570.80 104.82 816.79 70.87 1000000
ant-bullet-mixed-v0 AntBulletEnv-v0 255.40 196.22 609.66 -32.74 53572
walker2d-bullet-random-v0 Walker2DBulletEnv-v0 14.98 2.94 66.90 5.73 1000000
walker2d-bullet-medium-v0 Walker2DBulletEnv-v0 1106.68 417.79 1394.38 16.00 1000000
walker2d-bullet-mixed-v0 Walker2DBulletEnv-v0 181.51 277.71 1363.94 9.45 89772

train policy

You can train Soft Actor-Critic policy on your own machine.

# giving -g option to choose GPU device
$ ./scripts/train -e HopperBulletEnv-v0 -g 0 -n 1

data collection

You can collect datasets with the trained policy.

$ ./scripts/collect -e HopperBulletEnv-v0 -g -n 1

data collection with randomly initialized policy

You can collect datasets with the random policy.

$ ./scripts/random_collect -e HopperBulletEnv-v0 -g -n 1

contribution

Any contributions will be welcomed!!

coding style

This repository is formatted with yapf. You can format the entire repository (excluding offline_env.py) as follows:

$ ./scripts/format

acknowledgement

This work is supported by Information-technology Promotion Agency, Japan (IPA), Exploratory IT Human Resources Project (MITOU Program) in the fiscal year 2020.

More Repositories

1

d3rlpy

An offline deep reinforcement learning library
Python
924
star
2

ppo

Proximal Policy Optimization implementation with TensorFlow
Python
100
star
3

minerva

An out-of-the-box GUI tool for offline deep reinforcement learning
JavaScript
86
star
4

d4rl-atari

Datasets for data-driven deep reinforcement learning with Atari (wrapper for datasets released by Google)
Python
70
star
5

d3rlpy-benchmarks

Benchmark data for d3rlpy
Python
12
star
6

mvc-drl

Cleanest deep reinforcement learning implementation based on Web MVC architecture with complete unit testings
Python
10
star
7

icm

Intrinsic Curiosity Module implementation with TensorFlow
Python
9
star
8

cpp-dqn

Blazingly Fast Implementation of Deep Q-Network in C++ with NNabla
C++
9
star
9

rsvg

Recurrent Stochastic Value Gradient implementation with TensorFlow
Python
8
star
10

android-countrylist

This library is Android library for using country names and 2-alphabet codes
Java
5
star
11

GeoMap

GeoChart view library for Android
Java
4
star
12

miniature

a toy deep learning library written in Rust
Rust
4
star
13

singan-nnabla

SinGAN implementation with NNabla
Python
4
star
14

ddpg

Deep Deterministic Policy Gradient implementation with TensorFlow
Python
3
star
15

a3c

A3C implementation with TensorFlow
Python
3
star
16

configurable-control-gym

Configurable control tasks based on default environments included in OpenAI Gym
Python
3
star
17

a2c

A2C implementation with TensorFlow
Python
3
star
18

dotfiles

Lua
2
star
19

takuseno.github.io

Personal website
JavaScript
2
star
20

beta-vae

beta-VAE implementation with TensorFlow
Python
2
star
21

github-notebook

Markdown editor for GitHub
JavaScript
1
star
22

watchgpu-master

Master sever of GPU visualization
JavaScript
1
star
23

nnabla-mlflow

mlflow utilities for nnabla
Python
1
star
24

nand2tetris

Study codes of "The Elements of Computing Systems"
Hack
1
star
25

dqn-sokushukai

Sample DQN code for 速習会 in Wantedly
Python
1
star
26

watchgpu-edge

Edge server of GPU visualziation
Python
1
star
27

nsg

News Source Getter
Python
1
star
28

probabilistic_robotics

Study code of Probabilistic Robotics
Jupyter Notebook
1
star
29

unreal

UNREAL implementation with TensorFlow
Python
1
star
30

mvc-drl-nnabla

NNabla implementation of mvc-drl
Python
1
star
31

tensor-bridge

Transfer tensors between PyTorch, Jax and more
Python
1
star