• Stars
    star
    146
  • Rank 252,769 (Top 5 %)
  • Language
    C
  • License
    Other
  • Created over 3 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A collection of array rotation algorithms.

The most commonly used rotation algorithms (aka block swaps) were documented around 1981 and haven't notably changed since.

Below I'll describe the known variants as well as three novel rotation algorithms introduced in 2021, notably the trinity rotation, followed by some benchmarks.

C source code is available for all rotations described.

Introduction to rotating

A rotation is to swap the left side of an array with the right side.

┌──────────────────────────┬─────────────────┐
│ 1  2  3  4  5  6  7  8  910 11 12 13 14 15│
└──────────────────────────┴─────────────────┘

After the rotation the data is as following.

┌─────────────────┬──────────────────────────┐
│10 11 12 13 14 151  2  3  4  5  6  7  8  9│
└─────────────────┴──────────────────────────┘

Utility of rotating

According to Sean Parent rotations are a very common operation: https://www.youtube.com/watch?v=UZmeDQL4LaE

Auxiliary Rotation

This is an easy and fast way to rotate, but since it requires auxiliary memory it is of little interest to in-place algorithms. It's a good strategy for array sizes of 1000 elements or less.

Typically the smaller half is copied to swap memory, the larger half is moved, and the swap memory is copied back to the main array.

┌──────────────────────────┬─────────────────┐
│ 1  2  3  4  5  6  7  8  910 11 12 13 14 15│
└──────────────────────────┴─────────────────┘
                             └──┴──┴──┴──┴──┴────┬──┬──┬──┬──┬──┐
┌──────────────────────────┬─────────────────┐ ┌─────────────────┐
│ 1  2  3  4  5  6  7  8  9│                 │ │10 11 12 13 14 15│
└──────────────────────────┴─────────────────┘ └─────────────────┘
  └──┴──┴──┴──┴──┴──┼──┼──┼──┬──┬──┬──┬──┬──┐
┌─────────────────┬──────────────────────────┐ ┌─────────────────┐
│                 │ 1  2  3  4  5  6  7  8  9│ │10 11 12 13 14 15│
└─────────────────┴──────────────────────────┘ └─────────────────┘
  ┌──┬──┬──┬──┬──┬───────────────────────────────┴──┴──┴──┴──┴──┘
┌─────────────────┬──────────────────────────┐
│10 11 12 13 14 151  2  3  4  5  6  7  8  9│
└─────────────────┴──────────────────────────┘

auxiliary rotation

Bridge Rotation

This is a slightly more complex auxiliary rotation that reduces the maximum auxiliary memory requirement from 50% to 33%. If the overlap between the two halves is smaller than the halves themselves it copies the overlap to swap memory instead. Its first known publication was in 2021 by Igor van den Hoven.1

┌──────────────────────────┬─────────────────┐
│ 1  2  3  4  5  6  7  8  910 11 12 13 14 15│
└──────────────────────────┴─────────────────┘
                    └──┴──┴──────────────────────┬──┬──┐
┌─────────────────┬────────┬─────────────────┐ ┌────────┐
│ 1  2  3  4  5  6│        │10 11 12 13 14 15│ │ 7  8  9│
└─────────────────┴────────┴─────────────────┘ └────────┘
  ├─────────────────┬────────┘
┌─────────────────┬────────┬─────────────────┐ ┌────────┐
│10  2  3  4  5  6111 12 13 14 15│ │ 7  8  9│
└─────────────────┴────────┴─────────────────┘ └────────┘
     ├─────────────────┬────────┘
┌─────────────────┬────────┬─────────────────┐ ┌────────┐
│10 11  3  4  5  61  212 13 14 15│ │ 7  8  9│
└─────────────────┴────────┴─────────────────┘ └────────┘
        ├─────────────────┬────────┘
┌─────────────────┬────────┬─────────────────┐ ┌────────┐
│10 11 12  4  5  61  2  313 14 15│ │ 7  8  9│
└─────────────────┴────────┴─────────────────┘ └────────┘
           ├─────────────────┬────────┘
┌─────────────────┬────────┬─────────────────┐ ┌────────┐
│10 11 12 13  5  61  2  34          14 15│ │ 7  8  9│
└─────────────────┴────────┴─────────────────┘ └────────┘
              ├─────────────────┬────────┘
┌─────────────────┬────────┬─────────────────┐ ┌────────┐
│10 11 12 13 14  61  2  34  5          15│ │ 7  8  9│
└─────────────────┴────────┴─────────────────┘ └────────┘
                 ├─────────────────┬────────┘
┌─────────────────┬────────┬─────────────────┐ ┌────────┐
│10 11 12 13 14 151  2  34  5  6         │ │ 7  8  9│
└─────────────────┴────────┴─────────────────┘ └────────┘
                                      ┌──┬──┬────┴──┴──┘
┌─────────────────┬──────────────────────────┐
│10 11 12 13 14 151  2  3  4  5  6  7  8  9│
└─────────────────┴──────────────────────────┘

bridge rotation

Juggling Rotation

Also known as the dolphin algorithm. This is a relatively complex and inefficient way to rotate in-place, though it does so in the minimal number of moves. Its first known publication was in 1966.2

It computes the greatest common divisor and uses a loop to create a chain of consecutive swaps.

┌──────────────────────────┬─────────────────┐
│ 1  2  3  4  5  6  7  8  910 11 12 13 14 15│
└──────────────────────────┴─────────────────┘
  ↓        ↓        ↓        ↓        ↓
┌──────────────────────────┬─────────────────┐
│10  2  3 13  5  6  1  8  94 11 12  7 14 15│
└──────────────────────────┴─────────────────┘
     ↓        ↓        ↓        ↓        ↓
┌──────────────────────────┬─────────────────┐
│10 11  3 13 14  6  1  2  94  5 12  7  8 15│
└──────────────────────────┴─────────────────┘
        ↓        ↓        ↓        ↓        ↓
┌─────────────────┬──────────────────────────┐
│10 11 12 13 14 151  2  3  4  5  6  7  8  9│
└─────────────────┴──────────────────────────┘

juggling rotation

Triple Reversal Rotation

This is an easy and reliable way to rotate in-place. You reverse the left side, next you reverse the right side, next you reverse the entire array. Upon completion the left and right block will be swapped. There's no known first publication, but it was prior to 1981.3

┌──────────────────────────┬─────────────────┐
│ 1  2  3  4  5  6  7  8  910 11 12 13 14 15│
└──────────────────────────┴─────────────────┘
  ↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓
┌──────────────────────────┬─────────────────┐
│ 9  8  7  6  5  4  3  2  110 11 12 13 14 15│
└──────────────────────────┴─────────────────┘
                             ↓  ↓  ↓  ↓  ↓  ↓
┌──────────────────────────┬─────────────────┐
│ 9  8  7  6  5  4  3  2  115 14 13 12 11 10│
└──────────────────────────┴─────────────────┘
  ↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓
┌─────────────────┬──────────────────────────┐
│10 11 12 13 14 151  2  3  4  5  6  7  8  9│
└─────────────────┴──────────────────────────┘

reversal rotation

Gries-Mills Rotation

In some cases this rotation outperforms the classic triple reversal rotation while making fewer moves. You swap the smallest array linearly towards its proper location, since the blocks behind it are in the proper location you can forget about them. What remains of the larger array is now the smallest array, which you rotate in a similar manner, until the smallest side shrinks to 0 elements. Its first known publication was in 1981 by David Gries and Harlan Mills.3

┌──────────────────────────┬─────────────────┐
│ 1  2  3  4  5  6  7  8  910 11 12 13 14 15│
└──────────────────────────┴─────────────────┘
           ┌──┬──┬──┬──┬──┬──┴──┴──┴──┴──┴──┘
┌────────┬─────────────────┬─────────────────┐
│ 1  2  310 11 12 13 14 154  5  6  7  8  9│
└────────┴─────────────────┴─────────────────┘
  └──┴──┴──┬──┬──┐
┌────────┬────────┬──────────────────────────┐
│10 11 121  2  313 14 15  4  5  6  7  8  9│
└────────┴────────┴──────────────────────────┘
           └──┴──┴──┬──┬──┐
┌─────────────────┬──────────────────────────┐
│10 11 12 13 14 151  2  3  4  5  6  7  8  9│
└─────────────────┴──────────────────────────┘

griesmills rotation

Successive Rotation

First described by Gries and Mills in 1981, this rotation is very similar to the Gries-Mills rotation but performs non-linear swaps.3 It is implemented as the Piston Rotation in the benchmark, named after a loop optimization that removes up to log n branch mispredictions by performing both a left and rightward rotation in each loop.

┌──────────────────────────┬─────────────────┐
│ 1  2  3  4  5  6  7  8  910 11 12 13 14 15│
└──────────────────────────┴─────────────────┘
  ┌──┬──┬──┬──┬──┬───────────┴──┴──┴──┴──┴──┘
┌─────────────────┬────────┬─────────────────┐
│10 11 12 13 14 157  8  91  2  3  4  5  6│
└─────────────────┴────────┴─────────────────┘
                    └──┴──┴───────────┬──┬──┐
┌─────────────────┬────────┬────────┬────────┐
│10 11 12 13 14 154  5  61  2  37  8  9│
└─────────────────┴────────┴────────┴────────┘
                    ┌──┬──┬──┴──┴──┘
┌─────────────────┬──────────────────────────┐
│10 11 12 13 14 151  2  3  4  5  6  7  8  9│
└─────────────────┴──────────────────────────┘

piston rotation

Grail Rotation

The grail rotation from the Holy Grail Sort Project is Gries-Mills derived and tries to improve locality by shifting memory either left or right depending on which side it's swapped from.4 In addition it performs an auxiliary rotation on stack memory when the smallest side reaches a size of 1 element, which is the worst case for the Gries-Mills rotation. The flow diagram is identical to that of Gries-Mills, but due to memory being shifted from the right the visualization differs.

grail rotation

Helix Rotation

The helix rotation has similarities with the Gries-Mills rotation but has a distinct sequential movement pattern. It is an improvement upon the Grail rotation by merging the two inner loops into a single loop, significantly improving performance when the relative size difference between the two halves is large. In addition it doesn't stop when the smallest block no longer fits, but continues and recalculates the left or right side. The utilization of the merged loops is counter-intuitive and is likely novel. Its first known publication was in 2021 by Control from the Holy Grail Sort Project.4

┌──────────────────────────┬─────────────────┐
│ 1  2  3  4  5  6  7  8  910 11 12 13 14 15│
└──────────────────────────┴─────────────────┘
           ┌──┬──┬──┬──┬──┬──┴──┴──┴──┴──┴──┘
┌────────┬─────────────────┬─────────────────┐
│ 1  2  310 11 12 13 14 154  5  6  7  8  9│
└────────┴─────────────────┴─────────────────┘
  ┌──┬──┬───────────┴──┴──┘
┌─────────────────┬──────────────────────────┐
│13 14 15 10 11 121  2  3  4  5  6  7  8  9│
└─────────────────┴──────────────────────────┘
  └──┴──┴──┬──┬──┐
┌─────────────────┬──────────────────────────┐
│10 11 12 13 14 151  2  3  4  5  6  7  8  9│
└─────────────────┴──────────────────────────┘

helix rotation

Drill Rotation

The drill rotation is a grail variant that utilizes a piston main loop and a helix inner loop. Performance is similar to the helix rotation. The flow diagram and visualization are identical to the grail rotation.

Trinity Rotation

The trinity rotation (aka conjoined triple reversal) is derived from the triple reversal rotation. Rather than three separate reversals it conjoins the three reversals, improving locality and reducing the number of moves. Optionally, if the overlap is smaller than 8 elements, it skips the trinity rotation and performs an auxiliary or bridge rotation on stack memory. Its first known publication was in 2021 by Igor van den Hoven.1

┌──────────────────────────┬─────────────────┐
│ 1  2  3  4  5  6  7  8  910 11 12 13 14 15│
└──────────────────────────┴─────────────────┘
  ↓                       ↓  ↓              ↓
┌──────────────────────────┬─────────────────┐
│10  2  3  4  5  6  7  8  115 11 12 13 14  9│
└──────────────────────────┴─────────────────┘
     ↓                 ↓        ↓        ↓
┌──────────────────────────┬─────────────────┐
│10 11  3  4  5  6  7  2  115 14 12 13  8  9│
└──────────────────────────┴─────────────────┘
        ↓           ↓              ↓  ↓
┌──────────────────────────┬─────────────────┐
│10 11 12  4  5  6  3  2  115 14 13  7  8  9│
└──────────────────────────┴─────────────────┘
           ↓     ↓                 ↓
┌──────────────────────────┬─────────────────┐
│10 11 12 13  5  4  3  2  115 14  6  7  8  9│
└──────────────────────────┴─────────────────┘
              ↓                 ↓
┌──────────────────────────┬─────────────────┐
│10 11 12 13 14  4  3  2  115  5  6  7  8  9│
└──────────────────────────┴─────────────────┘
                 ↓           ↓
┌──────────────────────────┬─────────────────┐
│10 11 12 13 14 15  3  2  14  5  6  7  8  9│
└──────────────────────────┴─────────────────┘
                    ↓     ↓
┌─────────────────┬──────────────────────────┐
│10 11 12 13 14 151  2  3  4  5  6  7  8  9│
└─────────────────┴──────────────────────────┘

trinity rotation

Benchmarks

Since the auxiliary/bridge rotations are fairly similar I've omitted the auxiliary rotation from the benchmark graph. Similarly the grail rotation has been omitted since it's fundamentally slower than the helix rotation. The contrev rotation is the trinity rotation without auxiliary memory.

While performance may vary depending on the specific implemention and array size, from worst to best the order is:

  • Juggling Rotation (juggler)
  • Auxiliary Rotation
  • Gries-Mills Rotation (griesmills)
  • Successive Rotation (piston)
  • Grail Rotation
  • Bridge Rotation (bridge)
  • Triple Reversal Rotation (reversal)
  • Helix Rotation (helix)
  • Conjoined Triple Reversal Rotation (contrev)
  • Trinity Rotation (trinity)

It should be noted that the auxiliary Rotation performs better for smaller arrays and when the relative size difference between the two halves is large.

The following benchmark was on WSL 2 gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04). The source code was compiled using gcc -O3 bench.c. Each test was ran 1,000 times with the time (in seconds) reported of the best and average run.

rotation graph

data table
Name Items Type Best Average Loops Samples Distribution
bridge 1000000 32 0.000389 0.000510 1 200 1/999999
helix 1000000 32 0.000383 0.000457 1 200 1/999999
trinity 1000000 32 0.000395 0.000482 1 200 1/999999
reversal 1000000 32 0.000517 0.000617 1 200 1/999999
bridge 1000000 32 0.000385 0.000445 1 200 1000/999000
helix 1000000 32 0.000487 0.000559 1 200 1000/999000
trinity 1000000 32 0.000412 0.000469 1 200 1000/999000
reversal 1000000 32 0.000507 0.000581 1 200 1000/999000
bridge 1000000 32 0.000456 0.000616 1 200 99999/900001
helix 1000000 32 0.000543 0.000619 1 200 99999/900001
trinity 1000000 32 0.000446 0.000551 1 200 99999/900001
reversal 1000000 32 0.000519 0.000598 1 200 99999/900001
bridge 1000000 32 0.000495 0.000595 1 200 199998/800002
helix 1000000 32 0.000572 0.000656 1 200 199998/800002
trinity 1000000 32 0.000447 0.000513 1 200 199998/800002
reversal 1000000 32 0.000519 0.000636 1 200 199998/800002
bridge 1000000 32 0.000557 0.000659 1 200 299997/700003
helix 1000000 32 0.000519 0.000694 1 200 299997/700003
trinity 1000000 32 0.000441 0.000544 1 200 299997/700003
reversal 1000000 32 0.000515 0.000701 1 200 299997/700003
bridge 1000000 32 0.000527 0.000612 1 200 399996/600004
helix 1000000 32 0.000481 0.000553 1 200 399996/600004
trinity 1000000 32 0.000437 0.000506 1 200 399996/600004
reversal 1000000 32 0.000506 0.000602 1 200 399996/600004
bridge 1000000 32 0.000394 0.000488 1 200 499995/500005
helix 1000000 32 0.000669 0.000746 1 200 499995/500005
trinity 1000000 32 0.000398 0.000498 1 200 499995/500005
reversal 1000000 32 0.000511 0.000590 1 200 499995/500005

rotation graph

data table
Name Items Type Best Average Loops Samples Distribution
contrev 1000000 32 0.000717 0.000840 1 200 1/999999
piston 1000000 32 0.002091 0.002398 1 200 1/999999
griesmills 1000000 32 0.002436 0.002565 1 200 1/999999
juggler 1000000 32 0.000612 0.000701 1 200 1/999999
contrev 1000000 32 0.000416 0.000487 1 200 1000/999000
piston 1000000 32 0.000474 0.000549 1 200 1000/999000
griesmills 1000000 32 0.000490 0.000581 1 200 1000/999000
juggler 1000000 32 0.001234 0.001339 1 200 1000/999000
contrev 1000000 32 0.000448 0.000512 1 200 99999/900001
piston 1000000 32 0.000534 0.000682 1 200 99999/900001
griesmills 1000000 32 0.000550 0.000619 1 200 99999/900001
juggler 1000000 32 0.001279 0.001570 1 200 99999/900001
contrev 1000000 32 0.000446 0.000528 1 200 199998/800002
piston 1000000 32 0.000564 0.000630 1 200 199998/800002
griesmills 1000000 32 0.000578 0.000687 1 200 199998/800002
juggler 1000000 32 0.001282 0.001783 1 200 199998/800002
contrev 1000000 32 0.000444 0.000517 1 200 299997/700003
piston 1000000 32 0.000517 0.000626 1 200 299997/700003
griesmills 1000000 32 0.000527 0.000612 1 200 299997/700003
juggler 1000000 32 0.002259 0.002476 1 200 299997/700003
contrev 1000000 32 0.000431 0.000502 1 200 399996/600004
piston 1000000 32 0.000505 0.000610 1 200 399996/600004
griesmills 1000000 32 0.000509 0.000588 1 200 399996/600004
juggler 1000000 32 0.001983 0.002230 1 200 399996/600004
contrev 1000000 32 0.000443 0.000543 1 200 499995/500005
piston 1000000 32 0.000667 0.000755 1 200 499995/500005
griesmills 1000000 32 0.000681 0.000776 1 200 499995/500005
juggler 1000000 32 0.001304 0.001475 1 200 499995/500005

Footnotes

Footnotes

  1. A collection of array rotation algorithms, Igor van den Hoven, May 2021 2

  2. Algorithm 284: Interchange of two blocks of data, William Fletcher and Roland Silver, May 1966

  3. SWAPPING SECTIONS, David Gries and Harlan Mills, January 1981 2 3

  4. The Holy Grail Sort Project 2

More Repositories

1

quadsort

Quadsort is a branchless stable adaptive mergesort faster than quicksort.
C
2,106
star
2

blitsort

Blitsort is an in-place stable adaptive rotate mergesort / quicksort.
C
700
star
3

fluxsort

A fast branchless stable quicksort / mergesort hybrid that is highly adaptive.
C
667
star
4

binary_search

A collection of improved binary search algorithms.
C
649
star
5

crumsort

A branchless unstable quicksort / mergesort that is highly adaptive.
C
316
star
6

gridsort

A stable adaptive partitioning comparison sort.
C
202
star
7

tintin

TinTin++, aka tt++, is an extensible console MUD client.
C
193
star
8

wolfsort

Wolfsort is a stable adaptive hybrid radix / merge sort.
C
191
star
9

binary_cube

Is a linear data structure with O(log n) searches and O(cbrt n) insertions and index lookups.
C
24
star
10

base252

Base252 is a binary to C string encoding scheme with flexible escaping.
C
23
star
11

mth

MTH (Mud Telopt Handler) server side TELNET implementation
C
22
star
12

octosort

Octosort is an in-place stable adaptive block merge sort.
C
18
star
13

lowlands

Lowlands is a DikuMUD/Merc/MrMud/Emud derived MUD server with MTH telnet support
C
13
star
14

basedmud

BasedMUD is a DikuMUD/Merc/ROM/QuickMUD/BaseMUD derived MUD with MTH telnet support
C
13
star
15

twinsort

An adaptive mergesort
C
12
star
16

webtin

Serve a tintin session in a web browser from a container.
Dockerfile
9
star
17

piposort

Piposort is a small branchless stable adaptive mergesort.
C
9
star
18

tinysort

Several sorting algorithms with a focus on sorting elements in the 0-32 items range.
C
8
star
19

vton

Virtual Terminal Object Notation, a typeless object notation system.
C
8
star
20

nekkidmud

NekkidMUD is a SocketMUD / NakedMud derived MUD server with MTH telnet support
C
7
star
21

msdp_protocol_snippet_by_kavir

MSDP Protocol Snippet by KaVir
C
6
star
22

cubesort

A stable adaptive partitioning comparison sort.
5
star
23

wickedmud

WickedMUD is a SocketMUD derived MUD server with MTH telnet support
C
5
star