• Stars
    star
    191
  • Rank 202,877 (Top 4 %)
  • Language
    C
  • License
    The Unlicense
  • Created over 4 years ago
  • Updated 9 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Wolfsort is a stable adaptive hybrid radix / merge sort.

Intro

This document describes a stable adaptive hybrid bucket / quick / merge / drop sort named wolfsort. The bucket sort, forming the core of wolfsort, is not a comparison sort, so wolfsort can be considered a member of the radix-sort family. Quicksort and mergesort are well known. Dropsort gained popularity after it was reinvented as Stalin sort. A benchmark is available at the bottom.

Why a hybrid?

While an adaptive merge sort is very fast at sorting ordered data, its inability to effectively partition is its greatest weakness. A radix-like bucket sort, on the other hand, is unable to take advantage of sorted data. While quicksort is fast at partitioning, a bucket sort is faster on medium-sized arrays in the 1K - 1M element range. Dropsort in turn hybridizes surprisingly well with bucket and sample sorts.

History

Wolfsort 1, codename: quantumsort, started out with the concept that memory is in abundance on modern systems. I theorized that by allocating 8n memory performance could be increased by allowing a bucket sort to partition in one pass.

Not all the memory would be used or ever accessed however, which is why I envisioned it as a type of poor-man's quantum computing. The extra memory only serves to simplify computations. The concept kind of worked, except that large memory allocations in C can be either very fast or very slow. I didn't investigate why.

I also learned people don't like it when you use the term quantum computing outside of the proper context, or perhaps they were upset about wolfsort's voracious appetite for memory. Hence it was named.

Wolfsort 2, codename: flowsort, is when I reinvented counting sort. Instead of making 1 pass and using extra memory to deal with fluctuations in the data, flowsort makes one pass to calculate the bucket sizes, then makes a second pass to neatly fill the buckets.

Wolfsort 3, codename: dripsort, was inspired by the work of M. Lochbaum on rhsort to use a method similar to dropsort to deal with bucket overflow, and to calculate the minimum and maximum value to optimize for distributions with a small range of values. Dripsort once again makes one pass and uses around 4n memory to deal with fluctuations in the data. Compared to v1 this is a 50% reduction in memory allocation, while at the same time significantly increasing robustness.

Analyzer

Wolfsort uses the same analyzer as fluxsort to sort fully in-order and fully reverse-order distributions in n comparisons. The array is split into 4 segments for which a measure of presortedness is calculated. Mostly ordered segments are sorted with quadsort, while mostly random segments are sorted with wolfsort.

In addition, the minimum and maximum value in the distribution is obtained.

Setting the bucket size

For optimal performance wolfsort needs to have at least 8 buckets, end up with between 1 and 16 elements per bucket, so the bucket size is set to hold 8 elements on average. However, the buckets should remain in the L1 cache, so the maximum number of buckets is set at 65536.

This sets the optimal range for wolfsort between 8 * 8 (64) and 8 * 65536 (524,288) elements. Beyond the optimal range performance will degrade steadily. Once the average bucket size reaches the threshold of 18 elements (1,179,648 total elements) the sort becomes less optimal than quicksort, though it retains a computational advantage for a little while longer.

By computing the minimum and maximum value in the data distribution, the number of buckets are optimized further to target the sweet spot.

Dropsort

Dropsort was first proposed as an alternative sorting algorithm by David Morgan in 2006, it makes one pass and is lossy. The algorithm was reinvented in 2018 as Stalin sort. The concept of dropping hash entries in a non-lossy manner was independently developed by Marshall Lochbaum in 2018 and is utilized in his 2022 release of rhsort (Robin Hood Sort).

Wolfsort allocates 4n memory to allow some deviancy in the data distribution and minimize bucket overflow. In the case an element is too deviant and overflows the bucket, it is copied in-place to the input array. In near-optimal cases this results in a minimal drip, in the worst case it will result in a downpour of elements being copied to the input array.

While a centrally planned partitioning system has its weaknesses, the worst case is mostly alleviated by using fluxsort on the deviant elements once partitioning finishes. Fluxsort is adaptive and is generally strong against distributions where wolfsort is weak.

The overall performance gain from incorporating dropsort into wolfsort is approximately 20%, but can reach an order of magnitude when the fallback is synergetic with fluxsort. Deviant distributions can deceive wolfsort for a time, but not a very long time.

Small number sorting

Since wolfsort uses auxiliary memory, each partition is stable once partitioning completes. The next step is to sort the content of each bucket using fluxsort. If the number of elements in a bucket is below 32, fluxsort defaults to quadsort, which is highly optimized for sorting small arrays using a combination of branchless parity merges and twice-unguarded insertion.

Once each bucket is sorted, all that remains is merging the two distributions of compliant and deviant elements, and wolfsort is finished.

Memory overhead

Wolfsort requires 4n memory for the partitioning process and n / 4 memory (up to a maximum of 65536) for the buckets.

If not enough memory is available wolfsort falls back on fluxsort, which requires exactly 1n swap memory, and if that's not sufficient fluxsort falls back on quadsort which can sort in-place. It is an option to fall back on blitsort instead of quadsort, but since this would be an a-typical case, and increase dependencies, I didn't implement this.

64 bit integers

With the advent of fluxsort and crumsort the dominance of radix sorts has been pushed out of 64 bit territory. Increased memory-level-parallelism in future hardware, or algorithmic optimizations, might make radix sorts feasible again for 64 bit types.

God Mode

Wolfsort supports a cheat mode where the sort becomes unstable. This trick was taken from rhsort. Since wolfsort aspires to have some utility as a stable sort, this method is disabled by default, including in the benchmark.

In the benchmark rhsort does use this optimization, but it's only relevant for the random % 100 distribution. For 32 bit random integers rhsort easily beats wolfsort without an unfair advantage.

Interface

Wolfsort uses the same interface as qsort, which is described in man qsort.

Wolfsort also comes with the wolfsort_prim(void *array, size_t nmemb, size_t size) function to perform primitive comparisons on arrays of 32 and 64 bit integers. Nmemb is the number of elements, while size should be either sizeof(int) or sizeof(long long) for signed integers, and sizeof(int) + 1 or sizeof(long long) + 1 for unsigned integers. Support for the char and short types can be easily added in wolfsort.h.

Wolfsort can only sort arrays of primitive integers by default. Wolfsort should be able to sort tables with some minor changes, but it'll require a different interface than qsort() provides.

Proof of concept

Wolfsort is primarily a proof of concept for a hybrid bucket / comparison sort. It only supports non-negative integers.

I'll briefly mention other sorting algorithms listed in the benchmark code / graphs. They can all be considered the fastest algorithms currently available in their particular class.

Blitsort

Blitsort is a hybrid in-place stable adaptive rotate quick / merge sort.

Crumsort

Crumsort is a hybrid in-place unstable adaptive quick / rotate merge sort.

Quadsort

Quadsort is an adaptive mergesort. It supports rotations as a fall-back to sort in-place. It has very good performance when it comes to sorting tables and generally outperforms timsort.

Gridsort

Gridsort is a stable comparison sort which stores data in a 2 dimensional self-balancing grid. It has some interesting properties and was the fastest comparison sort for random data for a brief period of time.

Fluxsort

Fluxsort is a hybrid stable branchless out-of-place quick / merge sort.

Piposort Piposort is a simplified branchless quadsort with a much smaller code size and complexity while still being very fast. Piposort might be of use to people who want to port quadsort. This is a lot easier when you start out small.

rhsort

rhsort is a hybrid stable out-of-place counting / radix / drop / insertion sort. It has exceptional performance on random and generic data for medium array sizes.

Ska sort

Ska sort is an advanced radix sort that can sort strings and floats as well. It offers both an in-place and out-of-place version, but since the out-of-place unstable version is not very competitive with wolfsort, I only benchmark the stable and faster ska_sort_copy variant.

Big O

                 ┌───────────────────────┐┌────────────────────┐
                 │comparisons            ││swap memory         │
┌───────────────┐├───────┬───────┬───────┤├──────┬──────┬──────┤┌──────┐┌─────────┐┌─────────┐┌─────────┐
│name           ││min    │avg    │max    ││min   │avg   │max   ││stable││partition││adaptive ││compares │
├───────────────┤├───────┼───────┼───────┤├──────┼──────┼──────┤├──────┤├─────────┤├─────────┤├─────────┤
│blitsort       ││n      │n log n│n log n││1     │1     │1     ││yes   ││yes      ││yes      ││yes      │
├───────────────┤├───────┼───────┼───────┤├──────┼──────┼──────┤├──────┤├─────────┤├─────────┤├─────────┤
│crumsort       ││n      │n log n│n log n││1     │1     │1     ││no    ││yes      ││yes      ││yes      │
├───────────────┤├───────┼───────┼───────┤├──────┼──────┼──────┤├──────┤├─────────┤├─────────┤├─────────┤
│fluxsort       ││n      │n log n│n log n││n     │n     │n     ││yes   ││yes      ││yes      ││yes      │
├───────────────┤├───────┼───────┼───────┤├──────┼──────┼──────┤├──────┤├─────────┤├─────────┤├─────────┤
│gridsort       ││n      │n log n│n log n││n     │n     │n     ││yes   ││yes      ││yes      ││yes      │
├───────────────┤├───────┼───────┼───────┤├──────┼──────┼──────┤├──────┤├─────────┤├─────────┤├─────────┤
│quadsort       ││n      │n log n│n log n││1     │n     │n     ││yes   ││no       ││yes      ││yes      │
├───────────────┤├───────┼───────┼───────┤├──────┼──────┼──────┤├──────┤├─────────┤├─────────┤├─────────┤
│wolfsort       ││n      │n log n│n log n││n     │n     │n     ││yes   ││yes      ││yes      ││hybrid   │
├───────────────┤├───────┼───────┼───────┤├──────┼──────┼──────┤├──────┤├─────────┤├─────────┤├─────────┤
│rhsort         ││n      │n log n│n log n││n     │n     │n     ││yes   ││yes      ││semi     ││hybrid   │
├───────────────┤├───────┼───────┼───────┤├──────┼──────┼──────┤├──────┤├─────────┤├─────────┤├─────────┤
│skasort_copy   ││n k    │n k    │n k    ││n     │n     │n     ││yes   ││yes      ││no       ││no       │
└───────────────┘└───────┴───────┴───────┘└──────┴──────┴──────┘└──────┘└─────────┘└─────────┘└─────────┘

Benchmark for Wolfsort v1.1.5.4 (dripsort)

rhsort vs wolfsort vs ska_sort_copy on 100K elements

The following benchmark was on WSL gcc version 7.4.0 (Ubuntu 7.4.0-1ubuntu1~18.04.1) on 100,000 32 bit integers. The source code was compiled using g++ -O3 -fpermissive bench.c. All comparisons are inlined through the cmp macro. A table with the best and average time in seconds can be uncollapsed below the bar graph.

Graph

data table
Name Items Type Best Average Loops Samples Distribution
rhsort 100000 32 0.000680 0.000708 0 100 random order
wolfsort 100000 32 0.000965 0.000983 0 100 random order
skasort 100000 32 0.000617 0.000622 0 100 random order
rhsort 100000 32 0.000119 0.000122 0 100 random % 100
wolfsort 100000 32 0.000370 0.000374 0 100 random % 100
skasort 100000 32 0.000752 0.000759 0 100 random % 100
rhsort 100000 32 0.000301 0.000322 0 100 ascending order
wolfsort 100000 32 0.000088 0.000090 0 100 ascending order
skasort 100000 32 0.000691 0.000713 0 100 ascending order
rhsort 100000 32 0.000592 0.000618 0 100 ascending saw
wolfsort 100000 32 0.000371 0.000382 0 100 ascending saw
skasort 100000 32 0.000617 0.000650 0 100 ascending saw
rhsort 100000 32 0.000572 0.000583 0 100 pipe organ
wolfsort 100000 32 0.000248 0.000250 0 100 pipe organ
skasort 100000 32 0.000618 0.000625 0 100 pipe organ
rhsort 100000 32 0.000396 0.000410 0 100 descending order
wolfsort 100000 32 0.000098 0.000099 0 100 descending order
skasort 100000 32 0.000669 0.000680 0 100 descending order
rhsort 100000 32 0.000593 0.000603 0 100 descending saw
wolfsort 100000 32 0.000468 0.000476 0 100 descending saw
skasort 100000 32 0.000620 0.000658 0 100 descending saw
rhsort 100000 32 0.000614 0.000638 0 100 random tail
wolfsort 100000 32 0.000463 0.000478 0 100 random tail
skasort 100000 32 0.000618 0.000639 0 100 random tail
rhsort 100000 32 0.000643 0.000677 0 100 random half
wolfsort 100000 32 0.000668 0.000691 0 100 random half
skasort 100000 32 0.000618 0.000646 0 100 random half
rhsort 100000 32 0.002240 0.002316 0 100 ascending tiles
wolfsort 100000 32 0.000684 0.000703 0 100 ascending tiles
skasort 100000 32 0.001109 0.001131 0 100 ascending tiles
rhsort 100000 32 0.000813 0.000849 0 100 bit reversal
wolfsort 100000 32 0.000760 0.000848 0 100 bit reversal
skasort 100000 32 0.000753 0.000767 0 100 bit reversal

The following benchmark was on WSL 2 gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04). The source code was compiled using g++ -O3 -w -fpermissive bench.c. It measures the performance on random data with array sizes ranging from 10 to 10,000,000. It's generated by running the benchmark using 10000000 0 0 as the argument. The benchmark is weighted, meaning the number of repetitions halves each time the number of items doubles. A table with the best and average time in seconds can be uncollapsed below the bar graph.

Graph

data table
Name Items Type Best Average Compares Samples Distribution
rhsort 10 32 0.132610 0.136086 0.0 10 random 10
wolfsort 10 32 0.064719 0.064945 0.0 10 random 10
skasort 10 32 0.100334 0.100726 0.0 10 random 10
rhsort 100 32 0.070575 0.071462 0.0 10 random 100
wolfsort 100 32 0.135128 0.135357 0.0 10 random 100
skasort 100 32 0.229353 0.229665 0.0 10 random 100
rhsort 1000 32 0.056956 0.057145 0.0 10 random 1000
wolfsort 1000 32 0.106792 0.107098 0.0 10 random 1000
skasort 1000 32 0.056963 0.057122 0.0 10 random 1000
rhsort 10000 32 0.057518 0.057828 0.0 10 random 10000
wolfsort 10000 32 0.098815 0.099122 0.0 10 random 10000
skasort 10000 32 0.058918 0.059145 0.0 10 random 10000
rhsort 100000 32 0.070904 0.071506 0.0 10 random 100000
wolfsort 100000 32 0.107784 0.108399 0.0 10 random 100000
skasort 100000 32 0.062774 0.063009 0.0 10 random 100000
rhsort 1000000 32 0.180159 0.184840 0.0 10 random 1000000
wolfsort 1000000 32 0.149275 0.149856 0.0 10 random 1000000
skasort 1000000 32 0.068193 0.068831 0.0 10 random 1000000
rhsort 10000000 32 0.408969 0.429529 0 10 random 10000000
wolfsort 10000000 32 0.193792 0.194660 0 10 random 10000000
skasort 10000000 32 0.114803 0.115355 0 10 random 10000000

Benchmark for Wolfsort v1.1.5.3 (flowsort)

fluxsort vs gridsort vs quadsort vs wolfsort on 100K elements

The following benchmark was on WSL gcc version 7.4.0 (Ubuntu 7.4.0-1ubuntu1~18.04.1). The source code was compiled using g++ -O3 -fpermissive bench.c. All comparisons are inlined through the cmp macro. A table with the best and average time in seconds can be uncollapsed below the bar graph.

Graph

data table
Name Items Type Best Average Compares Samples Distribution
fluxsort 100000 64 0.001884 0.001906 1 100 random order
gridsort 100000 64 0.002815 0.002839 1 100 random order
quadsort 100000 64 0.002742 0.002762 1 100 random order
wolfsort 100000 64 0.001880 0.001905 1 100 random order
Name Items Type Best Average Loops Samples Distribution
fluxsort 100000 32 0.001807 0.001824 1 100 random order
gridsort 100000 32 0.002785 0.002847 1 100 random order
quadsort 100000 32 0.002680 0.002704 1 100 random order
wolfsort 100000 32 0.001124 0.001135 1 100 random order
fluxsort 100000 32 0.000682 0.000697 1 100 random % 100
gridsort 100000 32 0.002347 0.002411 1 100 random % 100
quadsort 100000 32 0.002328 0.002346 1 100 random % 100
wolfsort 100000 32 0.000687 0.000702 1 100 random % 100
fluxsort 100000 32 0.000046 0.000046 1 100 ascending order
gridsort 100000 32 0.000280 0.000284 1 100 ascending order
quadsort 100000 32 0.000069 0.000069 1 100 ascending order
wolfsort 100000 32 0.000052 0.000053 1 100 ascending order
fluxsort 100000 32 0.000813 0.000823 1 100 ascending saw
gridsort 100000 32 0.000857 0.000881 1 100 ascending saw
quadsort 100000 32 0.000780 0.000789 1 100 ascending saw
wolfsort 100000 32 0.001043 0.001049 1 100 ascending saw
fluxsort 100000 32 0.000372 0.000377 1 100 pipe organ
gridsort 100000 32 0.000464 0.000475 1 100 pipe organ
quadsort 100000 32 0.000339 0.000344 1 100 pipe organ
wolfsort 100000 32 0.000377 0.000384 1 100 pipe organ
fluxsort 100000 32 0.000057 0.000058 1 100 descending order
gridsort 100000 32 0.000264 0.000269 1 100 descending order
quadsort 100000 32 0.000056 0.000056 1 100 descending order
wolfsort 100000 32 0.000063 0.000063 1 100 descending order
fluxsort 100000 32 0.000814 0.000828 1 100 descending saw
gridsort 100000 32 0.000857 0.000872 1 100 descending saw
quadsort 100000 32 0.000781 0.000790 1 100 descending saw
wolfsort 100000 32 0.001041 0.001052 1 100 descending saw
fluxsort 100000 32 0.000930 0.000941 1 100 random tail
gridsort 100000 32 0.001042 0.001053 1 100 random tail
quadsort 100000 32 0.000899 0.000911 1 100 random tail
wolfsort 100000 32 0.001022 0.001032 1 100 random tail
fluxsort 100000 32 0.001628 0.001646 1 100 random half
gridsort 100000 32 0.001674 0.001688 1 100 random half
quadsort 100000 32 0.001594 0.001605 1 100 random half
wolfsort 100000 32 0.001113 0.001121 1 100 random half
fluxsort 100000 32 0.001172 0.001192 1 100 ascending tiles
gridsort 100000 32 0.000715 0.000728 1 100 ascending tiles
quadsort 100000 32 0.000885 0.000899 1 100 ascending tiles
wolfsort 100000 32 0.001179 0.001205 1 100 ascending tiles
fluxsort 100000 32 0.001639 0.001686 1 100 bit reversal
gridsort 100000 32 0.002222 0.002257 1 100 bit reversal
quadsort 100000 32 0.002338 0.002379 1 100 bit reversal
wolfsort 100000 32 0.001399 0.001418 1 100 bit reversal

fluxsort vs gridsort vs quadsort vs wolfsort on 10M elements

Graph

data table
Name Items Type Best Average Compares Samples Distribution
fluxsort 10000000 64 0.308943 0.335428 1 3 random order
gridsort 10000000 64 0.455605 0.482164 1 3 random order
quadsort 10000000 64 0.472495 0.473274 1 3 random order
wolfsort 10000000 64 0.312488 0.315160 1 3 random order
Name Items Type Best Average Loops Samples Distribution
fluxsort 10000000 32 0.259171 0.261448 1 10 random order
gridsort 10000000 32 0.355227 0.357552 1 10 random order
quadsort 10000000 32 0.413495 0.414651 1 10 random order
wolfsort 10000000 32 0.229678 0.230089 1 10 random order
fluxsort 10000000 32 0.097939 0.099613 1 10 random % 100
gridsort 10000000 32 0.176730 0.178361 1 10 random % 100
quadsort 10000000 32 0.394085 0.394782 1 10 random % 100
wolfsort 10000000 32 0.097527 0.099378 1 10 random % 100
fluxsort 10000000 32 0.006999 0.007147 1 10 ascending order
gridsort 10000000 32 0.033335 0.033666 1 10 ascending order
quadsort 10000000 32 0.011839 0.012158 1 10 ascending order
wolfsort 10000000 32 0.007024 0.007177 1 10 ascending order
fluxsort 10000000 32 0.106033 0.106387 1 10 ascending saw
gridsort 10000000 32 0.089285 0.089569 1 10 ascending saw
quadsort 10000000 32 0.102307 0.102624 1 10 ascending saw
wolfsort 10000000 32 0.176965 0.177436 1 10 ascending saw
fluxsort 10000000 32 0.078222 0.079080 1 10 pipe organ
gridsort 10000000 32 0.052793 0.053039 1 10 pipe organ
quadsort 10000000 32 0.074502 0.074878 1 10 pipe organ
wolfsort 10000000 32 0.078383 0.078891 1 10 pipe organ
fluxsort 10000000 32 0.010252 0.010461 1 10 descending order
gridsort 10000000 32 0.031824 0.032061 1 10 descending order
quadsort 10000000 32 0.010015 0.010226 1 10 descending order
wolfsort 10000000 32 0.010319 0.011173 1 10 descending order
fluxsort 10000000 32 0.105708 0.106228 1 10 descending saw
gridsort 10000000 32 0.088798 0.089277 1 10 descending saw
quadsort 10000000 32 0.102057 0.102854 1 10 descending saw
wolfsort 10000000 32 0.177001 0.177721 1 10 descending saw
fluxsort 10000000 32 0.168678 0.170819 1 10 random tail
gridsort 10000000 32 0.128310 0.128682 1 10 random tail
quadsort 10000000 32 0.164986 0.165363 1 10 random tail
wolfsort 10000000 32 0.180367 0.180880 1 10 random tail
fluxsort 10000000 32 0.259989 0.260365 1 10 random half
gridsort 10000000 32 0.218096 0.218445 1 10 random half
quadsort 10000000 32 0.256074 0.256747 1 10 random half
wolfsort 10000000 32 0.225742 0.226761 1 10 random half
fluxsort 10000000 32 0.190243 0.202370 1 10 ascending tiles
gridsort 10000000 32 0.126200 0.126526 1 10 ascending tiles
quadsort 10000000 32 0.166375 0.168735 1 10 ascending tiles
wolfsort 10000000 32 0.189927 0.196767 1 10 ascending tiles
fluxsort 10000000 32 0.238367 0.246001 1 10 bit reversal
gridsort 10000000 32 0.314635 0.315373 1 10 bit reversal
quadsort 10000000 32 0.393338 0.394130 1 10 bit reversal
wolfsort 10000000 32 0.277224 0.278359 1 10 bit reversal

blitsort vs crumsort vs pdqsort vs wolfsort on 100K elements

The following benchmark was on WSL gcc version 7.4.0 (Ubuntu 7.4.0-1ubuntu1~18.04.1). The source code was compiled using g++ -O3 -fpermissive bench.c. All comparisons are inlined through the cmp macro. A table with the best and average time in seconds can be uncollapsed below the bar graph.

Blitsort uses 512 elements of auxiliary memory, crumsort 512, pdqsort 64, and wolfsort 100000. Graph

data table
Name Items Type Best Average Compares Samples Distribution
blitsort 100000 64 0.002385 0.002498 1 100 random order
crumsort 100000 64 0.001879 0.001905 1 100 random order
pdqsort 100000 64 0.002690 0.002711 1 100 random order
wolfsort 100000 64 0.001900 0.001924 1 100 random order
Name Items Type Best Average Loops Samples Distribution
blitsort 100000 32 0.002236 0.002328 1 100 random order
crumsort 100000 32 0.001811 0.001834 1 100 random order
pdqsort 100000 32 0.002692 0.002714 1 100 random order
wolfsort 100000 32 0.001117 0.001126 1 100 random order
blitsort 100000 32 0.001067 0.001126 1 100 random % 100
crumsort 100000 32 0.000615 0.000632 1 100 random % 100
pdqsort 100000 32 0.000774 0.000785 1 100 random % 100
wolfsort 100000 32 0.000676 0.000694 1 100 random % 100
blitsort 100000 32 0.000046 0.000048 1 100 ascending order
crumsort 100000 32 0.000046 0.000046 1 100 ascending order
pdqsort 100000 32 0.000084 0.000087 1 100 ascending order
wolfsort 100000 32 0.000052 0.000052 1 100 ascending order
blitsort 100000 32 0.000989 0.001000 1 100 ascending saw
crumsort 100000 32 0.000989 0.000998 1 100 ascending saw
pdqsort 100000 32 0.003357 0.003386 1 100 ascending saw
wolfsort 100000 32 0.001039 0.001046 1 100 ascending saw
blitsort 100000 32 0.000479 0.000484 1 100 pipe organ
crumsort 100000 32 0.000478 0.000496 1 100 pipe organ
pdqsort 100000 32 0.002847 0.002871 1 100 pipe organ
wolfsort 100000 32 0.000375 0.000379 1 100 pipe organ
blitsort 100000 32 0.000057 0.000057 1 100 descending order
crumsort 100000 32 0.000057 0.000057 1 100 descending order
pdqsort 100000 32 0.000187 0.000191 1 100 descending order
wolfsort 100000 32 0.000062 0.000065 1 100 descending order
blitsort 100000 32 0.000991 0.001001 1 100 descending saw
crumsort 100000 32 0.000992 0.001002 1 100 descending saw
pdqsort 100000 32 0.003345 0.003370 1 100 descending saw
wolfsort 100000 32 0.001040 0.001046 1 100 descending saw
blitsort 100000 32 0.001257 0.001275 1 100 random tail
crumsort 100000 32 0.001256 0.001270 1 100 random tail
pdqsort 100000 32 0.002585 0.002607 1 100 random tail
wolfsort 100000 32 0.001017 0.001028 1 100 random tail
blitsort 100000 32 0.002146 0.002205 1 100 random half
crumsort 100000 32 0.001832 0.001851 1 100 random half
pdqsort 100000 32 0.002676 0.002700 1 100 random half
wolfsort 100000 32 0.001107 0.001120 1 100 random half
blitsort 100000 32 0.001366 0.001378 1 100 ascending tiles
crumsort 100000 32 0.001392 0.001411 1 100 ascending tiles
pdqsort 100000 32 0.002323 0.002346 1 100 ascending tiles
wolfsort 100000 32 0.001154 0.001163 1 100 ascending tiles
blitsort 100000 32 0.002049 0.002151 1 100 bit reversal
crumsort 100000 32 0.001788 0.001814 1 100 bit reversal
pdqsort 100000 32 0.002669 0.002691 1 100 bit reversal
wolfsort 100000 32 0.001404 0.001412 1 100 bit reversal

blitsort vs crumsort vs pdqsort vs wolfsort on 10M elements

Blitsort uses 512 elements of auxiliary memory, crumsort 512, pdqsort 64, and wolfsort 100000000.

Graph

data table
Name Items Type Best Average Compares Samples Distribution
blitsort 10000000 32 0.431147 0.446532 1 10 random order
crumsort 10000000 32 0.235650 0.239112 1 10 random order
pdqsort 10000000 32 0.341341 0.343518 1 10 random order
wolfsort 10000000 32 0.230182 0.234245 1 10 random order
blitsort 10000000 32 0.222452 0.229082 1 10 random % 100
crumsort 10000000 32 0.067306 0.067984 1 10 random % 100
pdqsort 10000000 32 0.080865 0.081336 1 10 random % 100
wolfsort 10000000 32 0.097294 0.099145 1 10 random % 100
blitsort 10000000 32 0.007126 0.007305 1 10 ascending order
crumsort 10000000 32 0.007130 0.007358 1 10 ascending order
pdqsort 10000000 32 0.011447 0.011598 1 10 ascending order
wolfsort 10000000 32 0.007215 0.007344 1 10 ascending order
blitsort 10000000 32 0.164120 0.164952 1 10 ascending saw
crumsort 10000000 32 0.164057 0.164723 1 10 ascending saw
pdqsort 10000000 32 0.493845 0.494221 1 10 ascending saw
wolfsort 10000000 32 0.183191 0.183485 1 10 ascending saw
blitsort 10000000 32 0.083955 0.084424 1 10 pipe organ
crumsort 10000000 32 0.083940 0.084308 1 10 pipe organ
pdqsort 10000000 32 0.371342 0.372002 1 10 pipe organ
wolfsort 10000000 32 0.081505 0.082062 1 10 pipe organ
blitsort 10000000 32 0.010336 0.010594 1 10 descending order
crumsort 10000000 32 0.010348 0.010538 1 10 descending order
pdqsort 10000000 32 0.022450 0.023052 1 10 descending order
wolfsort 10000000 32 0.010451 0.011243 1 10 descending order
blitsort 10000000 32 0.162735 0.163629 1 10 descending saw
crumsort 10000000 32 0.162815 0.163586 1 10 descending saw
pdqsort 10000000 32 0.602871 0.603748 1 10 descending saw
wolfsort 10000000 32 0.183247 0.183620 1 10 descending saw
blitsort 10000000 32 0.244109 0.245424 1 10 random tail
crumsort 10000000 32 0.244336 0.245258 1 10 random tail
pdqsort 10000000 32 0.327116 0.327682 1 10 random tail
wolfsort 10000000 32 0.187413 0.187889 1 10 random tail
blitsort 10000000 32 0.369266 0.371572 1 10 random half
crumsort 10000000 32 0.238968 0.239880 1 10 random half
pdqsort 10000000 32 0.336266 0.336881 1 10 random half
wolfsort 10000000 32 0.233998 0.234678 1 10 random half
blitsort 10000000 32 0.220400 0.222216 1 10 ascending tiles
crumsort 10000000 32 0.192702 0.193740 1 10 ascending tiles
pdqsort 10000000 32 0.280164 0.280676 1 10 ascending tiles
wolfsort 10000000 32 0.184983 0.196855 1 10 ascending tiles
blitsort 10000000 32 0.416927 0.428903 1 10 bit reversal
crumsort 10000000 32 0.233557 0.234727 1 10 bit reversal
pdqsort 10000000 32 0.336091 0.336796 1 10 bit reversal
wolfsort 10000000 32 0.261455 0.262815 1 10 bit reversal

More Repositories

1

quadsort

Quadsort is a branchless stable adaptive mergesort faster than quicksort.
C
2,106
star
2

blitsort

Blitsort is an in-place stable adaptive rotate mergesort / quicksort.
C
700
star
3

fluxsort

A fast branchless stable quicksort / mergesort hybrid that is highly adaptive.
C
667
star
4

binary_search

A collection of improved binary search algorithms.
C
649
star
5

crumsort

A branchless unstable quicksort / mergesort that is highly adaptive.
C
316
star
6

gridsort

A stable adaptive partitioning comparison sort.
C
202
star
7

tintin

TinTin++, aka tt++, is an extensible console MUD client.
C
193
star
8

rotate

A collection of array rotation algorithms.
C
146
star
9

binary_cube

Is a linear data structure with O(log n) searches and O(cbrt n) insertions and index lookups.
C
24
star
10

base252

Base252 is a binary to C string encoding scheme with flexible escaping.
C
23
star
11

mth

MTH (Mud Telopt Handler) server side TELNET implementation
C
22
star
12

octosort

Octosort is an in-place stable adaptive block merge sort.
C
18
star
13

lowlands

Lowlands is a DikuMUD/Merc/MrMud/Emud derived MUD server with MTH telnet support
C
13
star
14

basedmud

BasedMUD is a DikuMUD/Merc/ROM/QuickMUD/BaseMUD derived MUD with MTH telnet support
C
13
star
15

twinsort

An adaptive mergesort
C
12
star
16

webtin

Serve a tintin session in a web browser from a container.
Dockerfile
9
star
17

piposort

Piposort is a small branchless stable adaptive mergesort.
C
9
star
18

tinysort

Several sorting algorithms with a focus on sorting elements in the 0-32 items range.
C
8
star
19

vton

Virtual Terminal Object Notation, a typeless object notation system.
C
8
star
20

nekkidmud

NekkidMUD is a SocketMUD / NakedMud derived MUD server with MTH telnet support
C
7
star
21

msdp_protocol_snippet_by_kavir

MSDP Protocol Snippet by KaVir
C
6
star
22

cubesort

A stable adaptive partitioning comparison sort.
5
star
23

wickedmud

WickedMUD is a SocketMUD derived MUD server with MTH telnet support
C
5
star