• Stars
    star
    131
  • Rank 275,867 (Top 6 %)
  • Language
    Python
  • License
    MIT License
  • Created about 6 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

An Inplementation of CRF (Conditional Random Fields) in PyTorch 1.0

Torch CRF

CircleCI Coverage Status MIT License

Python Versions PyPI version

Implementation of CRF (Conditional Random Fields) in PyTorch

Requirements

  • python3 (>=3.6)
  • PyTorch (>=1.0)

Installation

$ pip install TorchCRF

Usage

>>> import torch
>>> from TorchCRF import CRF
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> batch_size = 2
>>> sequence_size = 3
>>> num_labels = 5
>>> mask = torch.ByteTensor([[1, 1, 1], [1, 1, 0]]).to(device) # (batch_size. sequence_size)
>>> labels = torch.LongTensor([[0, 2, 3], [1, 4, 1]]).to(device)  # (batch_size, sequence_size)
>>> hidden = torch.randn((batch_size, sequence_size, num_labels), requires_grad=True).to(device)
>>> crf = CRF(num_labels)

Computing log-likelihood (used where forward)

>>> crf.forward(hidden, labels, mask)
tensor([-7.6204, -3.6124], device='cuda:0', grad_fn=<ThSubBackward>)

Decoding (predict labels of sequences)

>>> crf.viterbi_decode(hidden, mask)
[[0, 2, 2], [4, 0]]

License

MIT

References