• Stars
    star
    146
  • Rank 238,856 (Top 5 %)
  • Language
    R
  • License
    Other
  • Created over 6 years ago
  • Updated 12 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Coroutines for R

coro

CRAN status R build status

Overview

coro implements coroutines for R, i.e.Β functions that can be suspended and resumed later on. There are two kinds:

  • Async functions, which make it straightforward to program concurrently
  • Generators for iterating over complex sequences

Supported features:

  • Suspending within loops and if/else branches
  • Suspending within tryCatch()
  • on.exit() expressions and stack-based cleanup such as provided by local_ functions in the withr package
  • Step-debugging and browser() within coroutines

Compatibility with:

  • Python iterators from the reticulate package
  • Async operations from the promises package
  • Parallel computations from the future package

Attach the package to follow the examples:

library(coro)

Async/await functions

Concurrent programming is made straightforward by async-await functions. Whenever you are waiting for a result that may take a while (downloading a file, computing a value in an external process), use await(). The argument to await() must return a promise from the promises package.

Concurrent code based on promises can quickly become hard to write and follow. In the following artificial example, we wait for a download to complete, then decide to launch a computation in an external process depending on a property of the downloaded data. We also handle some errors specifically.

my_async <- function() {
  async_download() %>%
    then(function(data) {
      if (ncol(data) > 10) {
        then(future::future(fib(30)), function(fib) {
          data / fib
        })
      } else {
        data
      }
    }, onRejected = function(err) {
      if (inherits(err, "download_error")) {
        NULL
      } else {
        stop(err)
      }
    })
}

Rewriting this function with async/await greatly simplifies the code:

my_async <- async(function() {
  data <- tryCatch(
    await(async_download()),
    download_error = function(err) NULL
  )

  if (is.null(data)) {
    return(NULL)
  }

  if (ncol(data) > 10) {
    fib <- await(future::future(fib(30)))
    data <- data /fib
  }

  data
})

Generators

Generators are based on a simple iteration protocol:

  • Iterators are functions.
  • They can be advanced by calling the function. The new value is returned.
  • An exhausted iterator returns the sentinel symbol exhausted.

The generator() function creates a generator factory which returns generator instances:

# Create a generator factory
generate_abc <- generator(function() {
  for (x in letters[1:3]) {
    yield(x)
  }
})

# Create a generator instance
abc <- generate_abc()

A generator instance is an iterator function which yields values:

abc
#> <generator/instance>
#> function() {
#>   for (x in letters[1:3]) {
#>     yield(x)
#>   }
#> }

abc()
#> [1] "a"

Collect all remaining values from an iterator with collect():

collect(abc)
#> [[1]]
#> [1] "b"
#> 
#> [[2]]
#> [1] "c"

Iterate over an iterator with loop():

loop(for (x in generate_abc()) {
  print(toupper(x))
})
#> [1] "A"
#> [1] "B"
#> [1] "C"

See vignette("generator") for more information.

Compatibility with the reticulate package

Python iterators imported with the reticulate package are compatible with loop() and collect():

suppressMessages(library(reticulate))

py_run_string("
def first_n(n):
    num = 1
    while num <= n:
        yield num
        num += 1
")

loop(for (x in py$first_n(3)) {
  print(x * 2)
})
#> [1] 2
#> [1] 4
#> [1] 6

They can also be composed with coro generators:

times <- generator(function(it, n) for (x in it) yield(x * n))

composed <- times(py$first_n(3), 10)

collect(composed)
#> [[1]]
#> [1] 10
#> 
#> [[2]]
#> [1] 20
#> 
#> [[3]]
#> [1] 30

Limitations

yield() and await() can be used in loops, if/else branches, tryCatch() expressions, or any combinations of these. However they can’t be used as function arguments. These will cause errors:

generator(function() {
  list(yield("foo"))
})

async(function() {
  list(await(foo()))
})

Fortunately it is easy to rewrite the code to work around this limitation:

generator(function() {
  x <- yield("foo")
  list(x)
})

async(function() {
  x <- await(foo())
  list(x)
})

How does it work

Coroutines are an abstraction for state machines in languages that support them. Conversely, you can implement coroutines by rewriting the code source provided by the user as a state machine. Pass internals = TRUE to the print methods of coroutines to reveal the state machine that is running under the hood:

print(generate_abc, internals = TRUE)
#> <generator>
#> function() {
#>   for (x in letters[1:3]) {
#>     yield(x)
#>   }
#> }
#> State machine:
#> {
#>     if (exhausted) {
#>         return(invisible(exhausted()))
#>     }
#>     repeat switch(state[[1L]], `1` = {
#>         iterators[[2L]] <- as_iterator(user(letters[1:3]))
#>         state[[1L]] <- 2L
#>         state[[2L]] <- 1L
#>     }, `2` = {
#>         repeat switch(state[[2L]], `1` = {
#>             if ({
#>                 iterator <- iterators[[2L]]
#>                 if (is_exhausted(elt <- iterator())) {
#>                   FALSE
#>                 } else {
#>                   user_env[["x"]] <- elt
#>                   TRUE
#>                 }
#>             }) {
#>                 state[[2L]] <- 2L
#>             } else {
#>                 break
#>             }
#>         }, `2` = {
#>             user({
#>                 x
#>             })
#>             state[[2L]] <- 3L
#>             suspend()
#>             return(last_value())
#>         }, `3` = {
#>             .last_value <- if (missing(arg)) NULL else arg
#>             state[[2L]] <- 1L
#>         })
#>         iterators[[2L]] <- NULL
#>         length(state) <- 1L
#>         break
#>     })
#>     exhausted <- TRUE
#>     invisible(exhausted())
#> }

Despite this transformation of source code, browser() and step-debugging still work as you would expect. This is because coro keeps track of the source references from the original code.

Acknowledgements

  • The regenerator Javascript package which uses a similar transformation to implement generators and async functions in older versions of Javascript.

  • Gabor Csardi for many interesting discussions about concurrency and the design of coro.

Installation

Install the development version from github with:

# install.packages("devtools")
devtools::install_github("r-lib/coro", build_vignettes = TRUE)

More Repositories

1

devtools

Tools to make an R developer's life easier
R
2,336
star
2

lintr

Static Code Analysis for R
R
1,135
star
3

httr

httr: a friendly http package for R
R
975
star
4

actions

GitHub Actions for the R community
JavaScript
868
star
5

testthat

An R πŸ“¦ to make testing πŸ˜€
R
849
star
6

usethis

Set up commonly used πŸ“¦ components
R
798
star
7

pkgdown

Generate static html documentation for an R package
R
686
star
8

styler

Non-invasive pretty printing of R code
R
657
star
9

pak

A fresh approach to package installation
C
575
star
10

cli

Tools for making beautiful & useful command line interfaces
R
571
star
11

roxygen2

Generate R package documentation from inline R comments
R
554
star
12

rig

The R Installation Manager
Rust
460
star
13

rlang

Low-level API for programming with R
R
454
star
14

progress

Progress bar in your R terminal
R
447
star
15

R6

Encapsulated object-oriented programming for R
R
393
star
16

here

A simpler way to find your files
R
387
star
17

scales

Tools for ggplot2 scales
R
373
star
18

fs

Provide cross platform file operations based on libuv.
C
353
star
19

covr

Test coverage reports for R
R
328
star
20

rex

Friendly regular expressions for R.
R
325
star
21

crayon

πŸ–οΈ R package for colored terminal output β€” now superseded by cli
R
321
star
22

memoise

Easy memoisation for R
R
310
star
23

remotes

Install R packages from GitHub, GitLab, Bitbucket, git, svn repositories, URLs
R
309
star
24

lobstr

Understanding complex R objects with tools similar to str()
R
294
star
25

callr

Call R from R
R
281
star
26

vctrs

Generic programming with typed R vectors
C
272
star
27

waldo

Find differences between R objects
R
272
star
28

slider

Sliding Window Functions
R
267
star
29

zeallot

Variable assignment with zeal! (or multiple, unpacking, and destructuring assignment in R)
R
245
star
30

conflicted

An alternative conflict resolution strategy for R
R
242
star
31

bench

High Precision Timing of R Expressions
R
237
star
32

gmailr

Access the Gmail RESTful API from R.
R
234
star
33

processx

Execute and Control Subprocesses from R
R
225
star
34

xml2

Bindings to libxml2
R
212
star
35

asciicast

Turn R scripts into terminal screencasts
R
211
star
36

gh

Minimalistic GitHub API client in R
R
210
star
37

httr2

Make HTTP requests and process their responses. A modern reimagining of httr.
R
206
star
38

cpp11

cpp11 helps you to interact with R objects using C++ code.
C++
187
star
39

keyring

πŸ” Access the system credential store from R
R
185
star
40

vdiffr

Visual regression testing and graphical diffing with testthat
C++
177
star
41

svglite

A lightweight svg graphics device for R
C++
177
star
42

pillar

Format columns with colour
R
173
star
43

ragg

Graphic Devices Based on AGG
C++
169
star
44

ymlthis

write YAML for R Markdown, bookdown, blogdown, and more
R
163
star
45

hugodown

Make websites with hugo and RMarkdown
R
163
star
46

withr

Methods For Temporarily Modifying Global State
R
162
star
47

rprojroot

Finding files in project subdirectories
R
146
star
48

debugme

Easy and efficient debugging for R packages
R
144
star
49

available

Check if a package name is available to use
R
141
star
50

ellipsis

Tools for Working with ...
R
138
star
51

archive

R bindings to libarchive, supporting a large variety of archive formats
C++
138
star
52

gert

Simple git client for R
C
136
star
53

later

Schedule an R function or formula to run after a specified period of time.
C++
132
star
54

rray

Simple Arrays
R
130
star
55

isoband

isoband: An R package to generate contour lines and polygons.
C++
130
star
56

fastmap

Fast map implementation for R
C++
128
star
57

prettyunits

Pretty, human readable formatting of quantities
JavaScript
126
star
58

tidyselect

A backend for functions taking tidyverse selections
R
122
star
59

desc

Manipulate DESCRIPTION files
R
120
star
60

gargle

Infrastructure for calling Google APIs from R, including auth
R
112
star
61

rcmdcheck

Run R CMD check from R and collect the results
R
110
star
62

evaluate

A version of eval for R that returns more information about what happened
R
107
star
63

prettycode

Syntax highlight R code in the terminal
R
100
star
64

mockery

A mocking library for R.
R
100
star
65

sloop

S language OOP ⛡️
R
98
star
66

pkgdepends

R Package Dependency Resolution
R
93
star
67

revdepcheck

R package reverse dependency checking
R
93
star
68

clock

A Date-Time Library for R
R
93
star
69

lifecycle

Manage the life cycle of your exported functions and arguments
R
91
star
70

systemfonts

System Native Font Handling in R
C++
90
star
71

gtable

The layout packages that powers ggplot2
R
85
star
72

askpass

Password Entry for R, Git, and SSH
R
83
star
73

rappdirs

Find OS-specific directories to store data, caches, and logs. A port of python's AppDirs
R
81
star
74

zip

Platform independent zip compression via miniz
C
81
star
75

commonmark

High Performance CommonMark and Github Markdown Rendering in R
C
81
star
76

downlit

Syntax Highlighting and Automatic Linking
R
80
star
77

clisymbols

Unicode symbols for CLI applications, with fallbacks
R
74
star
78

tree-sitter-r

C
74
star
79

ps

R package to query, list, manipulate system processes
C
72
star
80

sessioninfo

Print Session Information
R
72
star
81

pkgapi

Create a map of functions for an R package - WORK IN PROGRESS!
R
69
star
82

credentials

Tools for Managing SSH and Git Credentials
R
69
star
83

roxygen2md

Convert elements of roxygen documentation to markdown
R
69
star
84

sodium

R bindings to libsodium
R
68
star
85

backports

Reimplementations of Functions Introduced Since R-3.0.0
R
65
star
86

pkgbuild

Find tools needed to build R packages
R
65
star
87

cliapp

Rich Command Line Applications
R
62
star
88

webfakes

Fake web apps for HTTP testing R packages
C
61
star
89

generics

Common generic methods
R
60
star
90

diffviewer

HTML widget to visually compare files
JavaScript
57
star
91

liteq

Serverless R message queue using SQLite
R
55
star
92

pkgload

Simulate installing and loading a package
R
55
star
93

cachem

Key-value caches for R
R
53
star
94

carrier

Create standalone functions for remote execution
R
49
star
95

brio

Basic R Input Output
R
49
star
96

jose

Javascript Object Signing and Encryption for R
R
47
star
97

urlchecker

Run CRAN URL checks from older versions of R
R
46
star
98

pkgconfig

Private configuration for R packages
R
40
star
99

filelock

Cross platform file locking in R
R
39
star
100

pkginstall

Provides a replacement for `utils::install.packages()`
R
35
star