• Stars
    star
    361
  • Rank 115,059 (Top 3 %)
  • Language
    C
  • License
    Other
  • Created over 6 years ago
  • Updated about 1 month ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Provide cross platform file operations based on libuv.

fs

lifecycle R-CMD-check Codecov test coverage

fs provides a cross-platform, uniform interface to file system operations. It shares the same back-end component as nodejs, the libuv C library, which brings the benefit of extensive real-world use and rigorous cross-platform testing. The name, and some of the interface, is partially inspired by Rustโ€™s fs module.

Installation

You can install the released version of fs from CRAN with:

install.packages("fs")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("r-lib/fs")

Comparison vs base equivalents

fs functions smooth over some of the idiosyncrasies of file handling with base R functions:

  • Vectorization. All fs functions are vectorized, accepting multiple paths as input. Base functions are inconsistently vectorized.

  • Predictable return values that always convey a path. All fs functions return a character vector of paths, a named integer or a logical vector, where the names give the paths. Base return values are more varied: they are often logical or contain error codes which require downstream processing.

  • Explicit failure. If fs operations fail, they throw an error. Base functions tend to generate a warning and a system dependent error code. This makes it easy to miss a failure.

  • UTF-8 all the things. fs functions always convert input paths to UTF-8 and return results as UTF-8. This gives you path encoding consistency across OSes. Base functions rely on the native system encoding.

  • Naming convention. fs functions use a consistent naming convention. Because base Rโ€™s functions were gradually added over time there are a number of different conventions used (e.g.ย path.expand() vs normalizePath(); Sys.chmod() vs file.access()).

Tidy paths

fs functions always return โ€˜tidyโ€™ paths. Tidy paths

  • Always use / to delimit directories
  • never have multiple / or trailing /

Tidy paths are also coloured (if your terminal supports it) based on the file permissions and file type. This colouring can be customized or extended by setting the LS_COLORS environment variable, in the same output format as GNU dircolors.

Usage

fs functions are divided into four main categories:

  • path_ for manipulating and constructing paths
  • file_ for files
  • dir_ for directories
  • link_ for links

Directories and links are special types of files, so file_ functions will generally also work when applied to a directory or link.

library(fs)

# Construct a path to a file with `path()`
path("foo", "bar", letters[1:3], ext = "txt")
#> foo/bar/a.txt foo/bar/b.txt foo/bar/c.txt

# list files in the current directory
dir_ls()
#> DESCRIPTION      LICENSE          LICENSE.md       MAINTENANCE.md   
#> NAMESPACE        NEWS.md          R                README.Rmd       
#> README.md        _pkgdown.yml     cleanup          codecov.yml      
#> cran-comments.md fs.Rproj         inst             man              
#> man-roxygen      revdep           src              tests            
#> vignettes

# create a new directory
tmp <- dir_create(file_temp())
tmp
#> /var/folders/ph/fpcmzfd16rgbbk8mxvy9m2_h0000gn/T/RtmpsYVhMJ/file14eb5f12e1a8

# create new files in that directory
file_create(path(tmp, "my-file.txt"))
dir_ls(tmp)
#> /var/folders/ph/fpcmzfd16rgbbk8mxvy9m2_h0000gn/T/RtmpsYVhMJ/file14eb5f12e1a8/my-file.txt

# remove files from the directory
file_delete(path(tmp, "my-file.txt"))
dir_ls(tmp)
#> character(0)

# remove the directory
dir_delete(tmp)

fs is designed to work well with the pipe, though because it is a minimal-dependency infrastructure package it doesnโ€™t provide the pipe itself. You will need to attach magrittr or similar.

library(magrittr)

paths <- file_temp() %>%
  dir_create() %>%
  path(letters[1:5]) %>%
  file_create()
paths
#> /var/folders/ph/fpcmzfd16rgbbk8mxvy9m2_h0000gn/T/RtmpsYVhMJ/file14eb51c5215df/a
#> /var/folders/ph/fpcmzfd16rgbbk8mxvy9m2_h0000gn/T/RtmpsYVhMJ/file14eb51c5215df/b
#> /var/folders/ph/fpcmzfd16rgbbk8mxvy9m2_h0000gn/T/RtmpsYVhMJ/file14eb51c5215df/c
#> /var/folders/ph/fpcmzfd16rgbbk8mxvy9m2_h0000gn/T/RtmpsYVhMJ/file14eb51c5215df/d
#> /var/folders/ph/fpcmzfd16rgbbk8mxvy9m2_h0000gn/T/RtmpsYVhMJ/file14eb51c5215df/e

paths %>% file_delete()

fs functions also work well in conjunction with other tidyverse packages, like dplyr and purrr.

Some examplesโ€ฆ

suppressMessages(
  library(tidyverse))

Filter files by type, permission and size

dir_info("src", recurse = FALSE) %>%
  filter(type == "file", permissions == "u+r", size > "10KB") %>%
  arrange(desc(size)) %>%
  select(path, permissions, size, modification_time)
#> # A tibble: 11 ร— 4
#>    path          permissions        size modification_time  
#>    <fs::path>    <fs::perms> <fs::bytes> <dttm>             
#>  1 src/fs.so     rwxr-xr-x        492.6K 2023-01-22 21:52:58
#>  2 src/id.o      rw-r--r--        213.5K 2023-01-22 21:52:41
#>  3 src/dir.o     rw-r--r--        102.7K 2023-01-22 21:52:40
#>  4 src/utils.o   rw-r--r--         89.2K 2023-01-22 21:52:41
#>  5 src/path.o    rw-r--r--         81.7K 2023-01-22 21:52:41
#>  6 src/link.o    rw-r--r--         74.2K 2023-01-22 21:52:41
#>  7 src/getmode.o rw-r--r--         65.3K 2023-01-22 21:52:40
#>  8 src/file.o    rw-r--r--         48.5K 2023-01-22 21:52:40
#>  9 src/error.o   rw-r--r--         18.4K 2023-01-22 21:52:40
#> 10 src/init.o    rw-r--r--         17.4K 2023-01-22 21:52:41
#> 11 src/file.cc   rw-r--r--         11.7K 2023-01-22 21:52:29

Tabulate and display folder size.

dir_info("src", recurse = TRUE) %>%
  group_by(directory = path_dir(path)) %>%
  tally(wt = size, sort = TRUE)
#> # A tibble: 14 ร— 2
#>    directory                                n
#>    <chr>                          <fs::bytes>
#>  1 src/libuv-1.44.2                     2.85M
#>  2 src/libuv-1.44.2/src/unix            1.28M
#>  3 src                                  1.22M
#>  4 src/libuv-1.44.2/test                1.05M
#>  5 src/libuv-1.44.2/src/win           742.07K
#>  6 src/libuv-1.44.2/m4                 356.7K
#>  7 src/libuv-1.44.2/src               340.12K
#>  8 src/libuv-1.44.2/include/uv        137.44K
#>  9 src/libuv-1.44.2/img               106.71K
#> 10 src/libuv-1.44.2/include            66.23K
#> 11 src/unix                             60.2K
#> 12 src/bsd                             20.02K
#> 13 src/windows                          4.73K
#> 14 src/libuv-1.44.2/test/fixtures         453

Read a collection of files into one data frame.

dir_ls() returns a named vector, so it can be used directly with purrr::map_df(.id).

# Create separate files for each species
iris %>%
  split(.$Species) %>%
  map(select, -Species) %>%
  iwalk(~ write_tsv(.x, paste0(.y, ".tsv")))

# Show the files
iris_files <- dir_ls(glob = "*.tsv")
iris_files
#> setosa.tsv     versicolor.tsv virginica.tsv

# Read the data into a single table, including the filenames
iris_files %>%
  map_df(read_tsv, .id = "file", col_types = cols(), n_max = 2)
#> # A tibble: 6 ร— 5
#>   file           Sepal.Length Sepal.Width Petal.Length Petal.Width
#>   <chr>                 <dbl>       <dbl>        <dbl>       <dbl>
#> 1 setosa.tsv              5.1         3.5          1.4         0.2
#> 2 setosa.tsv              4.9         3            1.4         0.2
#> 3 versicolor.tsv          7           3.2          4.7         1.4
#> 4 versicolor.tsv          6.4         3.2          4.5         1.5
#> 5 virginica.tsv           6.3         3.3          6           2.5
#> 6 virginica.tsv           5.8         2.7          5.1         1.9

file_delete(iris_files)

Feedback wanted!

We hope fs is a useful tool for both analysis scripts and packages. Please open GitHub issues for any feature requests or bugs.

In particular, we have found non-ASCII filenames in non-English locales on Windows to be especially tricky to reproduce and handle correctly. Feedback from users who use commonly have this situation is greatly appreciated.

Code of Conduct

Please note that the fs project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

More Repositories

1

devtools

Tools to make an R developer's life easier
R
2,360
star
2

lintr

Static Code Analysis for R
R
1,158
star
3

httr

httr: a friendly http package for R
R
982
star
4

actions

GitHub Actions for the R community
TypeScript
917
star
5

testthat

An R ๐Ÿ“ฆ to make testing ๐Ÿ˜€
R
867
star
6

usethis

Set up commonly used ๐Ÿ“ฆ components
R
821
star
7

pkgdown

Generate static html documentation for an R package
R
702
star
8

styler

Non-invasive pretty printing of R code
R
692
star
9

pak

A fresh approach to package installation
C
630
star
10

cli

Tools for making beautiful & useful command line interfaces
R
618
star
11

roxygen2

Generate R package documentation from inline R comments
R
579
star
12

rig

The R Installation Manager
Rust
555
star
13

rlang

Low-level API for programming with R
R
484
star
14

progress

Progress bar in your R terminal
R
457
star
15

R6

Encapsulated object-oriented programming for R
R
402
star
16

here

A simpler way to find your files
R
401
star
17

scales

Tools for ggplot2 scales
R
386
star
18

rex

Friendly regular expressions for R.
R
331
star
19

covr

Test coverage reports for R
R
329
star
20

crayon

๐Ÿ–๏ธ R package for colored terminal output โ€” now superseded by cli
R
322
star
21

remotes

Install R packages from GitHub, GitLab, Bitbucket, git, svn repositories, URLs
R
321
star
22

memoise

Easy memoisation for R
R
314
star
23

lobstr

Understanding complex R objects with tools similar to str()
R
296
star
24

slider

Sliding Window Functions
R
290
star
25

callr

Call R from R
R
289
star
26

vctrs

Generic programming with typed R vectors
C
280
star
27

waldo

Find differences between R objects
R
275
star
28

zeallot

Variable assignment with zeal! (or multiple, unpacking, and destructuring assignment in R)
R
250
star
29

conflicted

An alternative conflict resolution strategy for R
R
243
star
30

bench

High Precision Timing of R Expressions
R
242
star
31

gmailr

Access the Gmail RESTful API from R.
R
230
star
32

processx

Execute and Control Subprocesses from R
R
227
star
33

httr2

Make HTTP requests and process their responses. A modern reimagining of httr.
R
223
star
34

asciicast

Turn R scripts into terminal screencasts
R
223
star
35

xml2

Bindings to libxml2
R
218
star
36

gh

Minimalistic GitHub API client in R
R
217
star
37

cpp11

cpp11 helps you to interact with R objects using C++ code.
C++
192
star
38

keyring

๐Ÿ” Access the system credential store from R
R
188
star
39

vdiffr

Visual regression testing and graphical diffing with testthat
C++
181
star
40

svglite

A lightweight svg graphics device for R
C++
178
star
41

pillar

Format columns with colour
R
173
star
42

ragg

Graphic Devices Based on AGG
C++
170
star
43

withr

Methods For Temporarily Modifying Global State
R
169
star
44

hugodown

Make websites with hugo and RMarkdown
R
165
star
45

ymlthis

write YAML for R Markdown, bookdown, blogdown, and more
R
163
star
46

coro

Coroutines for R
R
150
star
47

rprojroot

Finding files in project subdirectories
R
147
star
48

debugme

Easy and efficient debugging for R packages
R
145
star
49

available

Check if a package name is available to use
R
142
star
50

archive

R bindings to libarchive, supporting a large variety of archive formats
C++
141
star
51

ellipsis

Tools for Working with ...
R
139
star
52

later

Schedule an R function or formula to run after a specified period of time.
C++
136
star
53

gert

Simple git client for R
C
136
star
54

itdepends

R
133
star
55

rray

Simple Arrays
R
130
star
56

isoband

isoband: An R package to generate contour lines and polygons.
C++
130
star
57

prettyunits

Pretty, human readable formatting of quantities
JavaScript
128
star
58

fastmap

Fast map implementation for R
C++
127
star
59

desc

Manipulate DESCRIPTION files
R
121
star
60

tidyselect

A backend for functions taking tidyverse selections
R
121
star
61

gargle

Infrastructure for calling Google APIs from R, including auth
R
113
star
62

rcmdcheck

Run R CMD check from R and collect the results
R
109
star
63

evaluate

A version of eval for R that returns more information about what happened
R
108
star
64

prettycode

Syntax highlight R code in the terminal
R
100
star
65

revdepcheck

R package reverse dependency checking
R
99
star
66

sloop

S language OOP โ›ต๏ธ
R
99
star
67

mockery

A mocking library for R.
R
98
star
68

tree-sitter-r

C
95
star
69

clock

A Date-Time Library for R
R
95
star
70

pkgdepends

R Package Dependency Resolution
R
93
star
71

systemfonts

System Native Font Handling in R
C++
91
star
72

lifecycle

Manage the life cycle of your exported functions and arguments
R
90
star
73

gtable

The layout packages that powers ggplot2
R
85
star
74

askpass

Password Entry for R, Git, and SSH
R
83
star
75

commonmark

High Performance CommonMark and Github Markdown Rendering in R
C
83
star
76

zip

Platform independent zip compression via miniz
C
82
star
77

rappdirs

Find OS-specific directories to store data, caches, and logs. A port of python's AppDirs
R
81
star
78

downlit

Syntax Highlighting and Automatic Linking
R
81
star
79

clisymbols

Unicode symbols for CLI applications, with fallbacks
R
76
star
80

ps

R package to query, list, manipulate system processes
C
72
star
81

sessioninfo

Print Session Information
R
72
star
82

pkgapi

Create a map of functions for an R package - WORK IN PROGRESS!
R
70
star
83

credentials

Tools for Managing SSH and Git Credentials
R
70
star
84

sodium

R bindings to libsodium
R
68
star
85

roxygen2md

Convert elements of roxygen documentation to markdown
R
67
star
86

backports

Reimplementations of Functions Introduced Since R-3.0.0
R
65
star
87

pkgbuild

Find tools needed to build R packages
R
65
star
88

webfakes

Fake web apps for HTTP testing R packages
C
61
star
89

cliapp

Rich Command Line Applications
R
60
star
90

generics

Common generic methods
R
59
star
91

diffviewer

HTML widget to visually compare files
JavaScript
57
star
92

liteq

Serverless R message queue using SQLite
R
56
star
93

pkgload

Simulate installing and loading a package
R
54
star
94

cachem

Key-value caches for R
R
53
star
95

carrier

Create standalone functions for remote execution
R
50
star
96

brio

Basic R Input Output
R
50
star
97

marquee

Markdown Parser and Renderer for R Graphics
C
49
star
98

jose

Javascript Object Signing and Encryption for R
R
48
star
99

urlchecker

Run CRAN URL checks from older versions of R
R
45
star
100

pkgconfig

Private configuration for R packages
R
41
star