• Stars
    star
    343
  • Rank 123,371 (Top 3 %)
  • Language SystemVerilog
  • License
    Other
  • Created over 6 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

This is the top-level project for the PULP Platform. It instantiates a PULP open-source system with a PULP SoC (microcontroller) domain accelerated by a PULP cluster with 8 cores.

Citing

If you are using PULP in your academic work you can cite us:

@ARTICLE{8715500,
  author={Pullini, Antonio and Rossi, Davide and Loi, Igor and Tagliavini, Giuseppe and Benini, Luca},
  journal={IEEE Journal of Solid-State Circuits}, 
  title={Mr.Wolf: An Energy-Precision Scalable Parallel Ultra Low Power SoC for IoT Edge Processing}, 
  year={2019},
  volume={54},
  number={7},
  pages={1970-1981},
  doi={10.1109/JSSC.2019.2912307}}

PULP

PULP (Parallel Ultra-Low-Power) is an open-source multi-core computing platform part of the of the ongoing collaboration between ETH Zurich and the University of Bologna - started in 2013.

The PULP architecture targets IoT end-node applications requiring flexible processing of data streams generated by multiple sensors, such as accelerometers, low-resolution cameras, microphone arrays, vital signs monitors.

PULP consists of an advanced microcontroller architecture representing a significant step ahead in terms of completeness and complexity with respect to PULPino, taking care of autonomous I/O, advanced data pre-processing, external interrupts, and including a tightly-coupled cluster of processors to which compute-intensive kernels can be offloaded from a main processor. The PULP architecture includes:

  • Either the RI5CY core or the zero-riscy one as main core
  • Autonomous Input/Output subsystem (uDMA)
  • New memory subsystem
  • Support for Hardware Processing Engines (HWPEs)
  • New simple interrupt controller
  • New peripherals
  • New parallel computing cluster
  • New system DMA
  • New event unit
  • New SDK

RISCY is an in-order, single-issue core with 4 pipeline stages and it has an IPC close to 1, full support for the base integer instruction set (RV32I), compressed instructions (RV32C) and multiplication instruction set extension (RV32M). It can be configured to have single-precision floating-point instruction set extension (RV32F). It implements several ISA extensions such as: hardware loops, post-incrementing load and store instructions, bit-manipulation instructions, MAC operations, support fixed-point operations, packed-SIMD instructions and the dot product. It has been designed to increase the energy efficiency of in ultra-low-power signal processing applications. RISCY implementes a subset of the 1.9 privileged specification. Further information about the core can be found at http://ieeexplore.ieee.org/abstract/document/7864441/ and in the documentation of the IP.

zero-riscy is an in-order, single-issue core with 2 pipeline stages and it has full support for the base integer instruction set (RV32I) and compressed instructions (RV32C). It can be configured to have multiplication instruction set extension (RV32M) and the reduced number of registers extension (RV32E). It has been designed to target ultra-low-power and ultra-low-area constraints. zero-riscy implementes a subset of the 1.9 privileged specification. Further information about the core can be found at http://ieeexplore.ieee.org/document/8106976/ and in the documentation of the IP.

PULP includes a new efficient I/O subsystem via a uDMA (micro-DMA) which communicates with the peripherals autonomously. The core just needs to program the uDMA and wait for it to handle the transfer. Further information about the core can be found at http://ieeexplore.ieee.org/document/8106971/ and in the documentation of the IP.

PULP supports I/O on interfaces such as:

  • SPI (as master)
  • I2S
  • Camera Interface (CPI)
  • I2C
  • UART
  • JTAG

PULP also supports integration of hardware accelerators (Hardware Processing Engines) that share memory with the RI5CY core and are programmed on the memory map. An example accelerator, performing multiply-accumulate on a vector of fixed-point values, can be found in hwpe-mac-engine (after updating the IPs: see below in the Getting Started section). The hwpe-stream and hwpe-ctrl folders contain the IPs necessary to plug streaming accelerators into a PULP system on the data and control plane. For further information on how to design and integrate such accelerators, see hwpe-stream/doc and https://arxiv.org/abs/1612.05974.

Getting Started

Prerequisites

To be able to use the PULP platform, you need the PULP toolchain. The instructions to get it can be found here: https://github.com/pulp-platform/pulp-riscv-gnu-toolchain.

Building the RTL simulation platform

To build the RTL simulation platform, start by getting the latest version of the IPs composing the PULP system:

source setup/vsim.sh

make checkout

make scripts

make build

NOTE: An error might occur running the scripts (Failed to spawn child process.Too many open files (os error 24).) while a fix is WIP a workaround is to increase the number of processes avilable to your machine by setting for example ulimit to 4096 (ulimit -n 4096).

This command builds a version of the simulation platform with no dependencies on external models for peripherals. See below (Proprietary verification IPs) for details on how to plug in some models of real SPI, I2C, I2S peripherals.

Default dependency management is done using bender to gather IPs. If you would like to use the legacy IPApproX tool, set the IPAPPROX environment variable, e.g. by running export IPAPPROX=1, and continue at your own risk.

Working on IPs

The easiest way to work on an individual IP is to clone it using bender with the following command:

./bender clone $IP

This will checkout the IP to the working_dir directory, where it can be modified and the changes committed and pushed. The correct link will be set through an override in the Bender.local file, forcing the bender tool to use this version of the dependency. To build the platform, make sure to start at the make scripts step above after calling ./bender clone.

Once the changes are complete, please ensure the Bender.yml files in the packages calling the IP dependency are accordingly updated with the new version. The bender parents command can assist in determining which dependencies' Bender.yml files need updating. Please note that when modifying dependency versions, the ./bender update command needs to be called to re-resolve the correct versions. Once the update is complete, the corresponding line from Bender.local can be removed to revert to normal dependency resolution, no longer using the version in working_dir (be sure to call ./bender update). For more information check out the bender documentation.

Downloading and running simple C regression tests

Finally, you can download and run the tests; for that you can checkout the following repositories:

Now you can change directory to your favourite test e.g.: for an hello world test, run

git clone https://github.com/pulp-platform/regression_tests.git

git clone https://github.com/pulp-platform/pulp-runtime.git

source pulp-runtime/configs/pulp.sh

export PATH=*path to riscv gcc toolchain*/bin:$PATH

export PULP_RISCV_GCC_TOOLCHAIN= *path to riscv gcc toolchain*

cd regression_tests/hello

mae clean all run gui=1

The open-source simulation platform relies on JTAG to emulate preloading of the PULP L2 memory. If you want to simulate a more realistic scenario (e.g. accessing an external SPI Flash), look at the sections below.

In case you want to see the Modelsim GUI, just type

make conf gui=1

before starting the simulation.

If you want to save a (compressed) VCD for further examination, type

make conf vsim/script=export_run.tcl

before starting the simulation. You will find the VCD in build/<SRC_FILE_NAME>/pulp/export.vcd.gz where <SRC_FILE_NAME> is the name of the C source of the test.

Proprietary verification IPs

The full simulation platform can take advantage of a few models of commercial SPI, I2C, I2S peripherals to attach to the open-source PULP simulation platform. In rtl/vip/spi_flash, rtl/vip/i2c_eeprom, rtl/vip/i2s you find the instructions to install SPI, I2C and I2S models.

When the SPI flash model is installed, it will be possible to switch to a more realistic boot simulation, where the internal ROM of PULP is used to perform an initial boot and to start to autonomously fetch the program from the SPI flash. To do this, the LOAD_L2 parameter of the testbench has to be switched from JTAG to STANDALONE.

PULP-SDK

If you are a software developer, you can find the PULP-SDK here: https://github.com/pulp-platform/pulp-sdk.

PULP platform structure

After being fully setup as explained in the Getting Started section, this root repository is structured as follows:

  • rtl/tb contains the main platform testbench and the related files.
  • rtl/vip contains the verification IPs used to emulate external peripherals, e.g. SPI flash and camera.
  • rtl could also contain other material (e.g. global includes, top-level files)
  • sim contains the ModelSim/QuestaSim simulation platform.
  • pulp-sdk contains the PULP software development kit; pulp-sdk/tests contains all tests released with the SDK.
  • Bender.yml contains all dependency and source file information for the bender tool.

Requirements

The RTL platform has the following requirements:

  • Relatively recent Linux-based operating system; we tested Ubuntu 16.04 and CentOS 7.
  • ModelSim in reasonably recent version (we tested it with version 10.6b).
  • Python 3.4, with the pyyaml module installed (you can get that with pip3 install pyyaml).
  • The SDK has its own dependencies, listed in https://github.com/pulp-platform/pulp-sdk/blob/master/README.md

Repository organization

The PULP platforms is highly hierarchical and the Git repositories for the various IPs follow the hierarchy structure to keep maximum flexibility. Most of the complexity of the IP updating system are hidden behind the bender tool; however, a few details are important to know:

  • Do not assume that the master branch of an arbitrary IP is stable; many internal IPs could include unstable changes at a certain point of their history. Conversely, in top-level platforms (pulpissimo, pulp) we always use stable versions of the IPs. Therefore, you should be able to use the master branch of pulpissimo safely.
  • By default, the IPs will be collected from GitHub using HTTPS. This makes it possible for everyone to clone them without first uploading an SSH key to GitHub. However, for development it is often easier to use SSH instead, particularly if you want to push changes back.

The tools used to collect IPs and create scripts for simulation have many features that are not necessarily intended for the end user, but can be useful for developers; if you want more information, e.g. to integrate your own repository into the flow, you can find documentation at https://github.com/pulp-platform/bender/blob/master/README.md

External contributions

The supported way to provide external contributions is by forking one of our repositories, applying your patch and submitting a pull request where you describe your changes in detail, along with motivations. The pull request will be evaluated and checked with our regression test suite for possible integration. If you want to replace our version of an IP with your GitHub fork, just add it to the corresponding Bender.yml file, or use an override in a Bender.local in the top repository. While we are quite relaxed in terms of coding style, please try to follow these recommendations: https://github.com/pulp-platform/ariane/blob/master/CONTRIBUTING.md

Known issues

The current version of the PULP platform does not include yet an FPGA port or example scripts for ASIC synthesis; both things may be deployed in the future. Simulation flows different from ModelSim/QuestaSim have only have limited testing.

Support & Questions

For support on any issue related to this platform or any of the IPs, please add an issue to our tracker on https://github.com/pulp-platform/pulpissimo/issues

More Repositories

1

axi

AXI SystemVerilog synthesizable IP modules and verification infrastructure for high-performance on-chip communication
SystemVerilog
1,007
star
2

pulpino

An open-source microcontroller system based on RISC-V
C
876
star
3

pulp-dronet

A deep learning-powered visual navigation engine to enables autonomous navigation of pocket-size quadrotor - running on PULP
C
491
star
4

pulpissimo

This is the top-level project for the PULPissimo Platform. It instantiates a PULPissimo open-source system with a PULP SoC domain, but no cluster.
SystemVerilog
381
star
5

ara

The PULP Ara is a 64-bit Vector Unit, compatible with the RISC-V Vector Extension Version 1.0, working as a coprocessor to CORE-V's CVA6 core
C
365
star
6

common_cells

Common SystemVerilog components
SystemVerilog
331
star
7

mempool

A 256-RISC-V-core system with low-latency access into shared L1 memory.
C
273
star
8

bender

A dependency management tool for hardware projects.
Rust
232
star
9

snitch

â›” DEPRECATED â›” Lean but mean RISC-V system!
SystemVerilog
218
star
10

cheshire

A minimal Linux-capable 64-bit RISC-V SoC built around CVA6
Verilog
194
star
11

riscv-dbg

RISC-V Debug Support for our PULP RISC-V Cores
SystemVerilog
183
star
12

FlooNoC

A Fast, Low-Overhead On-chip Network
SystemVerilog
131
star
13

pulp-sdk

C
99
star
14

hero

Heterogeneous Research Platform (HERO) for exploration of heterogeneous computers consisting of programmable many-core accelerators and an application-class host CPU, including full-stack software and hardware.
SystemVerilog
94
star
15

iDMA

A modular, parametrizable, and highly flexible Data Movement Accelerator (DMA)
SystemVerilog
89
star
16

pulp-nn

C
76
star
17

dory

A tool to deploy Deep Neural Networks on PULP-based SoC's
Python
76
star
18

carfield

A mixed-criticality platform built around Cheshire, with a number of safety/security and predictability features. Ready-to-use FPGA flow on multiple boards is available.
Tcl
72
star
19

pulp-riscv-gnu-toolchain

C
72
star
20

spatz

Spatz is a compact RISC-V-based vector processor meant for high-performance, small computing clusters.
C
71
star
21

register_interface

Generic Register Interface (contains various adapters)
SystemVerilog
68
star
22

pulp_soc

pulp_soc is the core building component of PULP based SoCs
SystemVerilog
63
star
23

morty

A SystemVerilog source file pickler.
Rust
51
star
24

snitch_cluster

An energy-efficient RISC-V floating-point compute cluster.
C
50
star
25

bigpulp

â›” DEPRECATED â›” RISC-V manycore accelerator for HERO, bigPULP hardware platform
SystemVerilog
50
star
26

axi_riscv_atomics

AXI Adapter(s) for RISC-V Atomic Operations
SystemVerilog
43
star
27

nemo

NEural Minimizer for pytOrch
Python
40
star
28

common_verification

SystemVerilog modules and classes commonly used for verification
SystemVerilog
39
star
29

pulp-runtime

Simple runtime for Pulp platforms
C
34
star
30

redmule

SystemVerilog
33
star
31

pulp-dsp

C
32
star
32

quantlab

Shell
32
star
33

RVfplib

Optimized RISC-V FP emulation for 32-bit processors
Assembly
31
star
34

pulp_cluster

The multi-core cluster of a PULP system.
SystemVerilog
31
star
35

fann-on-mcu

C
29
star
36

svase

C++
29
star
37

culsans

Tightly-coupled cache coherence unit for CVA6 using the ACE protocol
C
27
star
38

pulp-trainlib

Floating-Point Optimized On-Device Learning Library for the PULP Platform.
C
26
star
39

tech_cells_generic

Technology dependent cells instantiated in the design for generic process (simulation, FPGA)
SystemVerilog
25
star
40

clint

RISC-V Core Local Interrupt Controller (CLINT)
SystemVerilog
24
star
41

cheshire-ihp130-o

Tcl
24
star
42

stream-ebpc

Provides the hardware code for the paper "EBPC: Extended Bit-Plane Compression for Deep Neural Network Inference and Training Accelerators" by Lukas Cavigelli, Georg Rutishauser, Luca Benini.
SystemVerilog
23
star
43

axi_mem_if

Simple single-port AXI memory interface
SystemVerilog
23
star
44

uvm-components

Contains commonly used UVM components (agents, environments and tests).
SystemVerilog
22
star
45

hero-sdk

â›” DEPRECATED â›” HERO Software Development Kit
Shell
21
star
46

ri5cy_gnu_toolchain

Makefile
21
star
47

jtag_dpi

JTAG DPI module for SystemVerilog RTL simulations
SystemVerilog
21
star
48

fpu

SystemVerilog
21
star
49

axi_llc

SystemVerilog
20
star
50

neureka

2-8bit weights, 8-bit activations flexible Neural Processing Engine for PULP clusters
SystemVerilog
19
star
51

hyperbus

SystemVerilog
18
star
52

axi_spi_slave

SystemVerilog
18
star
53

quantlib

A library to train and deploy quantised Deep Neural Networks
Python
18
star
54

clic

RISC-V fast interrupt controller
SystemVerilog
18
star
55

axi_node

AXI X-Bar
SystemVerilog
17
star
56

serial_link

A simple, scalable, source-synchronous, all-digital DDR link
SystemVerilog
17
star
57

croc

A PULP SoC for education, easy to understand and extend with a full flow for a physical design.
SystemVerilog
16
star
58

banshee

Rust
16
star
59

occamy

A high-efficiency system-on-chip for floating-point compute workloads.
Python
16
star
60

rbe

Reconfigurable Binary Engine
SystemVerilog
15
star
61

sne

SystemVerilog
15
star
62

gvsoc

Pulp virtual platform
C++
15
star
63

axi_spi_master

SystemVerilog
15
star
64

hwpe-stream

IPs for data-plane integration of Hardware Processing Engines (HWPEs) within a PULP system
SystemVerilog
14
star
65

Deeploy

ONNX-to-C Compiler for Heterogeneous SoCs
Python
14
star
66

fpu_div_sqrt_mvp

[UNRELEASED] FP div/sqrt unit for transprecision
SystemVerilog
13
star
67

ne16

Neural Engine, 16 input channels
SystemVerilog
13
star
68

trace_debugger

Capture retired instructions of a RISC-V Core and compress them to a sequence of packets.
SystemVerilog
12
star
69

axi2apb

SystemVerilog
12
star
70

mibench

The MiBench testsuite, extended for use in general embedded environments
C
12
star
71

adv_dbg_if

Advanced Debug Interface
SystemVerilog
12
star
72

hci

Heterogeneous Cluster Interconnect to bind special-purpose HW accelerators with general-purpose cluster cores
SystemVerilog
12
star
73

trdb

RISC-V processor tracing tools and library
C
12
star
74

pulp-nn-mixed

C
11
star
75

pulp-freertos

FreeRTOS for PULP
C
11
star
76

ecg-tcn

Official code for ECG-TCN paper accepted for publication on AICAS2021
Python
11
star
77

safety_island

A reliable, real-time subsystem for the Carfield SoC
C
11
star
78

ELAU

SystemVerilog
10
star
79

jtag_pulp

Verilog
10
star
80

AI-deck-workshop

Assembly
10
star
81

pulp-debug-bridge

Tool to connect the workstation to the pulp targets abd interact with them
C++
10
star
82

hier-icache

SystemVerilog
10
star
83

quadrilatero

matrix-coprocessor for RISC-V
C
10
star
84

pulp-detector

C
10
star
85

chimera

Python
9
star
86

riscv-gnu-toolchain

GNU toolchain for PULP and RISC-V
C
9
star
87

gpio

Parametric GPIO Peripheral
SystemVerilog
9
star
88

cluster_interconnect

SystemVerilog
9
star
89

hwpe-mac-engine

An example Hardware Processing Engine
SystemVerilog
9
star
90

obi

OBI SystemVerilog synthesizable interconnect IPs for on-chip communication
SystemVerilog
9
star
91

ITA

SystemVerilog
9
star
92

pulp-rt-examples

C
8
star
93

fpu_ss

CORE-V eXtension Interface compliant RISC-V [F|Zfinx] Coprocessor
SystemVerilog
8
star
94

pulp-builder

Shell
8
star
95

apb_timer

APB Timer Unit
SystemVerilog
8
star
96

pulp-transformer

C
8
star
97

redundancy_cells

SystemVerilog IPs and Modules for architectural redundancy designs.
SystemVerilog
8
star
98

pulp-ethernet

SystemVerilog
8
star
99

dram_rtl_sim

SystemVerilog
8
star
100

pulp-actions

Python
7
star