• Stars
    star
    7,074
  • Rank 5,511 (Top 0.2 %)
  • Language
    C++
  • License
    Apache License 2.0
  • Created about 6 years ago
  • Updated about 1 month ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference

PyPI Status Anaconda Status brew Status

PyPI Downloads Anaconda Downloads brew Downloads

Contents:

What is OpenVINO toolkit?

OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference.

  • Boost deep learning performance in computer vision, automatic speech recognition, natural language processing and other common tasks
  • Use models trained with popular frameworks like TensorFlow, PyTorch and more
  • Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud

This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime, Post-Training Optimization Tool, as well as CPU, GPU, GNA, multi device and heterogeneous plugins to accelerate deep learning inference on Intel® CPUs and Intel® Processor Graphics. It supports pre-trained models from Open Model Zoo, along with 100+ open source and public models in popular formats such as TensorFlow, ONNX, PaddlePaddle, MXNet, Caffe, Kaldi.

Components

  • OpenVINO™ Runtime - is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice.
    • core - provides the base API for model representation and modification.
    • inference - provides an API to infer models on the device.
    • transformations - contains the set of common transformations which are used in OpenVINO plugins.
    • low precision transformations - contains the set of transformations that are used in low precision models
    • bindings - contains all available OpenVINO bindings which are maintained by the OpenVINO team.
      • c - C API for OpenVINO™ Runtime
      • python - Python API for OpenVINO™ Runtime
  • Plugins - contains OpenVINO plugins which are maintained in open-source by the OpenVINO team. For more information, take a look at the list of supported devices.
  • Frontends - contains available OpenVINO frontends that allow reading models from the native framework format.
  • Model Optimizer - is a cross-platform command-line tool that facilitates the transition between training and deployment environments, performs static model analysis, and adjusts deep learning models for optimal execution on end-point target devices.
  • Post-Training Optimization Tool - is designed to accelerate the inference of deep learning models by applying special methods without model retraining or fine-tuning, for example, post-training 8-bit quantization.
  • Samples - applications in C, C++ and Python languages that show basic OpenVINO use cases.

Supported Hardware matrix

The OpenVINO™ Runtime can infer models on different hardware devices. This section provides the list of supported devices.

Device Plugin Library ShortDescription
CPU Intel CPU openvino_intel_cpu_plugin Intel Xeon with Intel® Advanced Vector Extensions 2 (Intel® AVX2), Intel® Advanced Vector Extensions 512 (Intel® AVX-512), and AVX512_BF16, Intel Core Processors with Intel AVX2, Intel Atom Processors with Intel® Streaming SIMD Extensions (Intel® SSE)
ARM CPU openvino_arm_cpu_plugin Raspberry Pi™ 4 Model B, Apple® Mac mini with M1 chip, NVIDIA® Jetson Nano™, Android™ devices
GPU Intel GPU openvino_intel_gpu_plugin Intel Processor Graphics, including Intel HD Graphics and Intel Iris Graphics
GNA Intel GNA openvino_intel_gna_plugin Intel Speech Enabling Developer Kit, Amazon Alexa* Premium Far-Field Developer Kit, Intel Pentium Silver J5005 Processor, Intel Pentium Silver N5000 Processor, Intel Celeron J4005 Processor, Intel Celeron J4105 Processor, Intel Celeron Processor N4100, Intel Celeron Processor N4000, Intel Core i3-8121U Processor, Intel Core i7-1065G7 Processor, Intel Core i7-1060G7 Processor, Intel Core i5-1035G4 Processor, Intel Core i5-1035G7 Processor, Intel Core i5-1035G1 Processor, Intel Core i5-1030G7 Processor, Intel Core i5-1030G4 Processor, Intel Core i3-1005G1 Processor, Intel Core i3-1000G1 Processor, Intel Core i3-1000G4 Processor

OpenVINO™ Toolkit also contains several plugins which simplify loading models on several hardware devices:

Plugin Library ShortDescription
Auto openvino_auto_plugin Auto plugin enables selecting Intel device for inference automatically
Auto Batch openvino_auto_batch_plugin Auto batch plugin performs on-the-fly automatic batching (i.e. grouping inference requests together) to improve device utilization, with no programming effort from the user
Hetero openvino_hetero_plugin Heterogeneous execution enables automatic inference splitting between several devices
Multi openvino_auto_plugin Multi plugin enables simultaneous inference of the same model on several devices in parallel

License

OpenVINO™ Toolkit is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.

Documentation

User documentation

The latest documentation for OpenVINO™ Toolkit is available here. This documentation contains detailed information about all OpenVINO components and provides all the important information you may need to create an application based on binary OpenVINO distribution or own OpenVINO version without source code modification.

Developer documentation

Developer documentation contains information about architectural decisions which are applied inside the OpenVINO components. This documentation has all necessary information which could be needed in order to contribute to OpenVINO.

Tutorials

The list of OpenVINO tutorials:

Products which use OpenVINO

System requirements

The system requirements vary depending on platform and are available on dedicated pages:

How to build

See How to build OpenVINO to get more information about the OpenVINO build process.

How to contribute

See Contributions Welcome for good first issues.

See CONTRIBUTING for contribution details. Thank you!

Get a support

Report questions, issues and suggestions, using:

Additional Resources


* Other names and brands may be claimed as the property of others.

More Repositories

1

open_model_zoo

Pre-trained Deep Learning models and demos (high quality and extremely fast)
Python
4,086
star
2

anomalib

An anomaly detection library comprising state-of-the-art algorithms and features such as experiment management, hyper-parameter optimization, and edge inference.
Python
3,761
star
3

openvino_notebooks

📚 Jupyter notebook tutorials for OpenVINO™
Jupyter Notebook
2,372
star
4

training_extensions

Train, Evaluate, Optimize, Deploy Computer Vision Models via OpenVINO™
Python
1,139
star
5

nncf

Neural Network Compression Framework for enhanced OpenVINO™ inference
Python
925
star
6

model_server

A scalable inference server for models optimized with OpenVINO™
C++
660
star
7

datumaro

Dataset Management Framework, a Python library and a CLI tool to build, analyze and manage Computer Vision datasets.
Python
528
star
8

openvino_tensorflow

OpenVINO™ integration with TensorFlow
C++
178
star
9

openvino.genai

Run Generative AI models using native OpenVINO C++ API
C++
120
star
10

openvino_contrib

Repository for OpenVINO's extra modules
C++
105
star
11

awesome-openvino

A curated list of OpenVINO based AI projects
99
star
12

geti-sdk

Software Development Kit (SDK) for the Intel® Geti™ platform for Computer Vision AI model training.
Python
73
star
13

docker_ci

The framework to generate a Dockerfile, build, test, and deploy a docker image with OpenVINO™ toolkit.
Dockerfile
58
star
14

training_toolbox_caffe

Training Toolbox for Caffe
Jupyter Notebook
49
star
15

openvino_build_deploy

Pre-built components and code samples to help you build and deploy production-grade AI applications with the OpenVINO™ Toolkit from Intel
Jupyter Notebook
42
star
16

npu_plugin

OpenVINO NPU Plugin
MLIR
33
star
17

workbench

TypeScript
28
star
18

model_api

C++
25
star
19

openvino_xai

OpenVINO™ Explainable AI (XAI) Toolkit: Visual Explanation for OpenVINO Models
Python
24
star
20

openvino_tokenizers

OpenVINO Tokenizers extension
C++
22
star
21

model_preparation_algorithm

Model Preparation Algorithm: a Transfer Learning Framework
Python
21
star
22

security_addon

OpenVINO™ Security Add-on to control access to inferencing models.
C
16
star
23

operator

OpenVINO operator for OpenShift and Kubernetes
Go
13
star
24

model_analyzer

Model Analyzer is the Network Statistic Information tool
Python
11
star
25

workbench_aux

OpenVINO™ Toolkit - Deep Learning Workbench repository Auxuliary Assets
Python
10
star
26

mlas

Assembly
8
star
27

hyper_parameter_optimization

Python library of automatic hyper-parameter optimization
Python
6
star
28

openvino_docs

OpenVINO™ Toolkit documentation repository
Python
3
star
29

MLPerf

C++
2
star
30

telemetry

Python
1
star
31

npu_plugin_btc

C++
1
star
32

cpu_extensions

1
star
33

npu_plugin_elf

C++
1
star