• Stars
    star
    925
  • Rank 49,378 (Top 1.0 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 4 years ago
  • Updated about 1 month ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Neural Network Compression Framework for enhanced OpenVINO™ inference

Neural Network Compression Framework (NNCF)

Key FeaturesInstallationDocumentationUsageTutorials and SamplesThird-party integrationModel Zoo

GitHub Release Website Apache License Version 2.0 PyPI Downloads

Neural Network Compression Framework (NNCF) provides a suite of post-training and training-time algorithms for neural networks inference optimization in OpenVINO™ with minimal accuracy drop.

NNCF is designed to work with models from PyTorch, TensorFlow, ONNX and OpenVINO™.

NNCF provides samples that demonstrate the usage of compression algorithms for different use cases and models. See compression results achievable with the NNCF-powered samples at Model Zoo page.

The framework is organized as a Python* package that can be built and used in a standalone mode. The framework architecture is unified to make it easy to add different compression algorithms for both PyTorch and TensorFlow deep learning frameworks.

Key Features

Post-Training Compression Algorithms

Compression algorithm OpenVINO PyTorch TensorFlow ONNX
Post-Training Quantization Supported Supported Supported Supported
Weights Compression Not supported Supported Not supported Not supported

Training-Time Compression Algorithms

Compression algorithm PyTorch TensorFlow
Quantization Aware Training Supported Supported
Mixed-Precision Quantization Supported Not supported
Binarization Supported Not supported
Sparsity Supported Supported
Filter pruning Supported Supported
Movement pruning Experimental Not supported
  • Automatic, configurable model graph transformation to obtain the compressed model.

    NOTE: Limited support for TensorFlow models. The models created using Sequential or Keras Functional API are only supported.

  • Common interface for compression methods.
  • GPU-accelerated layers for faster compressed model fine-tuning.
  • Distributed training support.
  • Git patch for prominent third-party repository (huggingface-transformers) demonstrating the process of integrating NNCF into custom training pipelines
  • Seamless combination of pruning, sparsity and quantization algorithms. Please refer to optimum-intel for examples of joint (movement) pruning, quantization and distillation (JPQD), end-to-end from NNCF optimization to compressed OpenVINO IR.
  • Exporting PyTorch compressed models to ONNX* checkpoints and TensorFlow compressed models to SavedModel or Frozen Graph format, ready to use with OpenVINO™ toolkit.
  • Support for Accuracy-Aware model training pipelines via the Adaptive Compression Level Training and Early Exit Training.

Documentation

This documentation covers detailed information about NNCF algorithms and functions needed for the contribution to NNCF.

The latest user documentation for NNCF is available here.

NNCF API documentation can be found here.

Usage

Post-Training Quantization

The NNCF PTQ is the simplest way to apply 8-bit quantization. To run the algorithm you only need your model and a small (~300 samples) calibration dataset.

OpenVINO is the preferred backend to run PTQ with, and PyTorch, TensorFlow and ONNX are also supported.

OpenVINO
import nncf
import openvino.runtime as ov
import torch
from torchvision import datasets, transforms

# Instantiate your uncompressed model
model = ov.Core().read_model("/model_path")

# Provide validation part of the dataset to collect statistics needed for the compression algorithm
val_dataset = datasets.ImageFolder("/path", transform=transforms.Compose([transforms.ToTensor()]))
dataset_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1)

# Step 1: Initialize transformation function
def transform_fn(data_item):
    images, _ = data_item
    return images

# Step 2: Initialize NNCF Dataset
calibration_dataset = nncf.Dataset(dataset_loader, transform_fn)
# Step 3: Run the quantization pipeline
quantized_model = nncf.quantize(model, calibration_dataset)
PyTorch
import nncf
import torch
from torchvision import datasets, models

# Instantiate your uncompressed model
model = models.mobilenet_v2()

# Provide validation part of the dataset to collect statistics needed for the compression algorithm
val_dataset = datasets.ImageFolder("/path", transform=transforms.Compose([transforms.ToTensor()]))
dataset_loader = torch.utils.data.DataLoader(val_dataset)

# Step 1: Initialize the transformation function
def transform_fn(data_item):
    images, _ = data_item
    return images

# Step 2: Initialize NNCF Dataset
calibration_dataset = nncf.Dataset(dataset_loader, transform_fn)
# Step 3: Run the quantization pipeline
quantized_model = nncf.quantize(model, calibration_dataset)
TensorFlow
import nncf
import tensorflow as tf
import tensorflow_datasets as tfds

# Instantiate your uncompressed model
model = tf.keras.applications.MobileNetV2()

# Provide validation part of the dataset to collect statistics needed for the compression algorithm
val_dataset = tfds.load("/path", split="validation",
                        shuffle_files=False, as_supervised=True)

# Step 1: Initialize transformation function
def transform_fn(data_item):
    images, _ = data_item
    return images

# Step 2: Initialize NNCF Dataset
calibration_dataset = nncf.Dataset(val_dataset, transform_fn)
# Step 3: Run the quantization pipeline
quantized_model = nncf.quantize(model, calibration_dataset)
ONNX
import onnx
import nncf
import torch
from torchvision import datasets

# Instantiate your uncompressed model
onnx_model = onnx.load_model("/model_path")

# Provide validation part of the dataset to collect statistics needed for the compression algorithm
val_dataset = datasets.ImageFolder("/path", transform=transforms.Compose([transforms.ToTensor()]))
dataset_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1)

# Step 1: Initialize transformation function
input_name = onnx_model.graph.input[0].name
def transform_fn(data_item):
    images, _ = data_item
    return {input_name: images.numpy()}

# Step 2: Initialize NNCF Dataset
calibration_dataset = nncf.Dataset(dataset_loader, transform_fn)
# Step 3: Run the quantization pipeline
quantized_model = nncf.quantize(onnx_model, calibration_dataset)

Training-Time Compression

Below is an example of Accuracy Aware Quantization pipeline where model weights and compression parameters may be fine-tuned to achieve a higher accuracy.

PyTorch
import torch
import nncf.torch  # Important - must be imported before any other external package that depends on torch

from nncf import NNCFConfig
from nncf.torch import create_compressed_model, register_default_init_args

# Instantiate your uncompressed model
from torchvision.models.resnet import resnet50
model = resnet50()

# Load a configuration file to specify compression
nncf_config = NNCFConfig.from_json("resnet50_int8.json")

# Provide data loaders for compression algorithm initialization, if necessary
import torchvision.datasets as datasets
representative_dataset = datasets.ImageFolder("/path", transform=transforms.Compose([transforms.ToTensor()]))
init_loader = torch.utils.data.DataLoader(representative_dataset)
nncf_config = register_default_init_args(nncf_config, init_loader)

# Apply the specified compression algorithms to the model
compression_ctrl, compressed_model = create_compressed_model(model, nncf_config)

# Now use compressed_model as a usual torch.nn.Module
# to fine-tune compression parameters along with the model weights

# ... the rest of the usual PyTorch-powered training pipeline

# Export to ONNX or .pth when done fine-tuning
compression_ctrl.export_model("compressed_model.onnx")
torch.save(compressed_model.state_dict(), "compressed_model.pth")

NOTE (PyTorch): Due to the way NNCF works within the PyTorch backend, import nncf must be done before any other import of torch in your package or in third-party packages that your code utilizes, otherwise the compression may be applied incompletely.

Tensorflow
import tensorflow as tf

from nncf import NNCFConfig
from nncf.tensorflow import create_compressed_model, register_default_init_args

# Instantiate your uncompressed model
from tensorflow.keras.applications import ResNet50
model = ResNet50()

# Load a configuration file to specify compression
nncf_config = NNCFConfig.from_json("resnet50_int8.json")

# Provide dataset for compression algorithm initialization
representative_dataset = tf.data.Dataset.list_files("/path/*.jpeg")
nncf_config = register_default_init_args(nncf_config, representative_dataset, batch_size=1)

# Apply the specified compression algorithms to the model
compression_ctrl, compressed_model = create_compressed_model(model, nncf_config)

# Now use compressed_model as a usual Keras model
# to fine-tune compression parameters along with the model weights

# ... the rest of the usual TensorFlow-powered training pipeline

# Export to Frozen Graph, TensorFlow SavedModel or .h5  when done fine-tuning
compression_ctrl.export_model("compressed_model.pb", save_format="frozen_graph")

For a more detailed description of NNCF usage in your training code, see this tutorial.

Model Compression Tutorials and Samples

For a quicker start with NNCF-powered compression, try sample notebooks and scripts presented below.

Model Compression Tutorials

A collection of ready-to-run Jupyter* notebooks are available to demonstrate how to use NNCF compression algorithms to optimize models for inference with the OpenVINO Toolkit:

Post-Training Quantization Samples

Compact scripts demonstrating quantization and corresponding inference speed boost:

Training-Time Compression Samples

These examples provide full pipelines including compression, training and inference for classification, object detection and segmentation tasks.

Third-party repository integration

NNCF may be straightforwardly integrated into training/evaluation pipelines of third-party repositories.

Used by

  • OpenVINO Training Extensions

    NNCF is integrated into OpenVINO Training Extensions as model optimization backend. So you can train, optimize and export new models based on the available model templates as well as run exported models with OpenVINO.

  • HuggingFace Optimum Intel

    NNCF is used as a compression backend within the renowned transformers repository in HuggingFace Optimum Intel.

Git patches for third-party repository

See third_party_integration for examples of code modifications (Git patches and base commit IDs are provided) that are necessary to integrate NNCF into the following repositories:

Installation Guide

For detailed installation instructions please refer to the Installation page.

NNCF can be installed as a regular PyPI package via pip:

pip install nncf

If you want to install both NNCF and the supported PyTorch version in one line, you can do this by simply running:

pip install nncf[torch]

Other viable options besides [torch] are [tf], [onnx] and [openvino].

NNCF is also available via conda:

conda install -c conda-forge nncf

You may also use one of the Dockerfiles in the docker directory to build an image with an environment already set up and ready for running NNCF sample scripts.

System requirements

  • Ubuntu* 18.04 or later (64-bit)
  • Python* 3.7 or later
  • Supported frameworks:
    • PyTorch* >=1.13.0, <2.1
    • TensorFlow* >=2.4.0, <=2.12.0
    • ONNX* ~=1.13.1
    • OpenVINO* >=2022.3.0

This repository is tested on Python* 3.8.10, PyTorch* 2.0.1 (NVidia CUDA* Toolkit 11.7) and TensorFlow* 2.12.0 (NVidia CUDA* Toolkit 11.8).

NNCF Compressed Model Zoo

List of models and compression results for them can be found at our Model Zoo page.

Citing

@article{kozlov2020neural,
    title =   {Neural network compression framework for fast model inference},
    author =  {Kozlov, Alexander and Lazarevich, Ivan and Shamporov, Vasily and Lyalyushkin, Nikolay and Gorbachev, Yury},
    journal = {arXiv preprint arXiv:2002.08679},
    year =    {2020}
}

Contributing Guide

Refer to the CONTRIBUTING.md file for guidelines on contributions to the NNCF repository.

Useful links

More Repositories

1

openvino

OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference
C++
7,074
star
2

open_model_zoo

Pre-trained Deep Learning models and demos (high quality and extremely fast)
Python
4,086
star
3

anomalib

An anomaly detection library comprising state-of-the-art algorithms and features such as experiment management, hyper-parameter optimization, and edge inference.
Python
3,761
star
4

openvino_notebooks

📚 Jupyter notebook tutorials for OpenVINO™
Jupyter Notebook
2,372
star
5

training_extensions

Train, Evaluate, Optimize, Deploy Computer Vision Models via OpenVINO™
Python
1,139
star
6

model_server

A scalable inference server for models optimized with OpenVINO™
C++
660
star
7

datumaro

Dataset Management Framework, a Python library and a CLI tool to build, analyze and manage Computer Vision datasets.
Python
528
star
8

openvino_tensorflow

OpenVINO™ integration with TensorFlow
C++
178
star
9

openvino.genai

Run Generative AI models using native OpenVINO C++ API
C++
120
star
10

openvino_contrib

Repository for OpenVINO's extra modules
C++
105
star
11

awesome-openvino

A curated list of OpenVINO based AI projects
99
star
12

geti-sdk

Software Development Kit (SDK) for the Intel® Geti™ platform for Computer Vision AI model training.
Python
73
star
13

docker_ci

The framework to generate a Dockerfile, build, test, and deploy a docker image with OpenVINO™ toolkit.
Dockerfile
58
star
14

training_toolbox_caffe

Training Toolbox for Caffe
Jupyter Notebook
49
star
15

openvino_build_deploy

Pre-built components and code samples to help you build and deploy production-grade AI applications with the OpenVINO™ Toolkit from Intel
Jupyter Notebook
42
star
16

npu_plugin

OpenVINO NPU Plugin
MLIR
33
star
17

workbench

TypeScript
28
star
18

model_api

C++
25
star
19

openvino_xai

OpenVINO™ Explainable AI (XAI) Toolkit: Visual Explanation for OpenVINO Models
Python
24
star
20

openvino_tokenizers

OpenVINO Tokenizers extension
C++
22
star
21

model_preparation_algorithm

Model Preparation Algorithm: a Transfer Learning Framework
Python
21
star
22

security_addon

OpenVINO™ Security Add-on to control access to inferencing models.
C
16
star
23

operator

OpenVINO operator for OpenShift and Kubernetes
Go
13
star
24

model_analyzer

Model Analyzer is the Network Statistic Information tool
Python
11
star
25

workbench_aux

OpenVINO™ Toolkit - Deep Learning Workbench repository Auxuliary Assets
Python
10
star
26

mlas

Assembly
8
star
27

hyper_parameter_optimization

Python library of automatic hyper-parameter optimization
Python
6
star
28

openvino_docs

OpenVINO™ Toolkit documentation repository
Python
3
star
29

MLPerf

C++
2
star
30

telemetry

Python
1
star
31

npu_plugin_btc

C++
1
star
32

cpu_extensions

1
star
33

npu_plugin_elf

C++
1
star