• Stars
    star
    1,871
  • Rank 24,773 (Top 0.5 %)
  • Language
    Python
  • License
    MIT License
  • Created over 7 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Code for a multi-agent particle environment used in the paper "Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments"

Status: Archive (code is provided as-is, no updates expected)

Maintained Fork

The maintained version of these environments, which includenumerous fixes, comprehensive documentation, support for installation via pip, and support for current versions of Python are available in PettingZoo (https://github.com/Farama-Foundation/PettingZoo , https://pettingzoo.farama.org/environments/mpe/)

Multi-Agent Particle Environment

A simple multi-agent particle world with a continuous observation and discrete action space, along with some basic simulated physics. Used in the paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.

Getting started:

  • To install, cd into the root directory and type pip install -e .

  • To interactively view moving to landmark scenario (see others in ./scenarios/): bin/interactive.py --scenario simple.py

  • Known dependencies: Python (3.5.4), OpenAI gym (0.10.5), numpy (1.14.5), pyglet (1.5.27)

  • To use the environments, look at the code for importing them in make_env.py.

Code structure

  • make_env.py: contains code for importing a multiagent environment as an OpenAI Gym-like object.

  • ./multiagent/environment.py: contains code for environment simulation (interaction physics, _step() function, etc.)

  • ./multiagent/core.py: contains classes for various objects (Entities, Landmarks, Agents, etc.) that are used throughout the code.

  • ./multiagent/rendering.py: used for displaying agent behaviors on the screen.

  • ./multiagent/policy.py: contains code for interactive policy based on keyboard input.

  • ./multiagent/scenario.py: contains base scenario object that is extended for all scenarios.

  • ./multiagent/scenarios/: folder where various scenarios/ environments are stored. scenario code consists of several functions:

    1. make_world(): creates all of the entities that inhabit the world (landmarks, agents, etc.), assigns their capabilities (whether they can communicate, or move, or both). called once at the beginning of each training session
    2. reset_world(): resets the world by assigning properties (position, color, etc.) to all entities in the world called before every episode (including after make_world() before the first episode)
    3. reward(): defines the reward function for a given agent
    4. observation(): defines the observation space of a given agent
    5. (optional) benchmark_data(): provides diagnostic data for policies trained on the environment (e.g. evaluation metrics)

Creating new environments

You can create new scenarios by implementing the first 4 functions above (make_world(), reset_world(), reward(), and observation()).

List of environments

Env name in code (name in paper) Communication? Competitive? Notes
simple.py N N Single agent sees landmark position, rewarded based on how close it gets to landmark. Not a multiagent environment -- used for debugging policies.
simple_adversary.py (Physical deception) N Y 1 adversary (red), N good agents (green), N landmarks (usually N=2). All agents observe position of landmarks and other agents. One landmark is the ‘target landmark’ (colored green). Good agents rewarded based on how close one of them is to the target landmark, but negatively rewarded if the adversary is close to target landmark. Adversary is rewarded based on how close it is to the target, but it doesn’t know which landmark is the target landmark. So good agents have to learn to ‘split up’ and cover all landmarks to deceive the adversary.
simple_crypto.py (Covert communication) Y Y Two good agents (alice and bob), one adversary (eve). Alice must sent a private message to bob over a public channel. Alice and bob are rewarded based on how well bob reconstructs the message, but negatively rewarded if eve can reconstruct the message. Alice and bob have a private key (randomly generated at beginning of each episode), which they must learn to use to encrypt the message.
simple_push.py (Keep-away) N Y 1 agent, 1 adversary, 1 landmark. Agent is rewarded based on distance to landmark. Adversary is rewarded if it is close to the landmark, and if the agent is far from the landmark. So the adversary learns to push agent away from the landmark.
simple_reference.py Y N 2 agents, 3 landmarks of different colors. Each agent wants to get to their target landmark, which is known only by other agent. Reward is collective. So agents have to learn to communicate the goal of the other agent, and navigate to their landmark. This is the same as the simple_speaker_listener scenario where both agents are simultaneous speakers and listeners.
simple_speaker_listener.py (Cooperative communication) Y N Same as simple_reference, except one agent is the ‘speaker’ (gray) that does not move (observes goal of other agent), and other agent is the listener (cannot speak, but must navigate to correct landmark).
simple_spread.py (Cooperative navigation) N N N agents, N landmarks. Agents are rewarded based on how far any agent is from each landmark. Agents are penalized if they collide with other agents. So, agents have to learn to cover all the landmarks while avoiding collisions.
simple_tag.py (Predator-prey) N Y Predator-prey environment. Good agents (green) are faster and want to avoid being hit by adversaries (red). Adversaries are slower and want to hit good agents. Obstacles (large black circles) block the way.
simple_world_comm.py Y Y Environment seen in the video accompanying the paper. Same as simple_tag, except (1) there is food (small blue balls) that the good agents are rewarded for being near, (2) we now have ‘forests’ that hide agents inside from being seen from outside; (3) there is a ‘leader adversary” that can see the agents at all times, and can communicate with the other adversaries to help coordinate the chase.

Paper citation

If you used this environment for your experiments or found it helpful, consider citing the following papers:

Environments in this repo:

@article{lowe2017multi,
  title={Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments},
  author={Lowe, Ryan and Wu, Yi and Tamar, Aviv and Harb, Jean and Abbeel, Pieter and Mordatch, Igor},
  journal={Neural Information Processing Systems (NIPS)},
  year={2017}
}

Original particle world environment:

@article{mordatch2017emergence,
  title={Emergence of Grounded Compositional Language in Multi-Agent Populations},
  author={Mordatch, Igor and Abbeel, Pieter},
  journal={arXiv preprint arXiv:1703.04908},
  year={2017}
}

More Repositories

1

whisper

Robust Speech Recognition via Large-Scale Weak Supervision
Python
62,693
star
2

openai-cookbook

Examples and guides for using the OpenAI API
MDX
58,610
star
3

gym

A toolkit for developing and comparing reinforcement learning algorithms.
Python
34,442
star
4

CLIP

CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image
Jupyter Notebook
22,966
star
5

openai-python

The official Python library for the OpenAI API
Python
22,561
star
6

gpt-2

Code for the paper "Language Models are Unsupervised Multitask Learners"
Python
21,450
star
7

chatgpt-retrieval-plugin

The ChatGPT Retrieval Plugin lets you easily find personal or work documents by asking questions in natural language.
Python
21,032
star
8

baselines

OpenAI Baselines: high-quality implementations of reinforcement learning algorithms
Python
15,622
star
9

gpt-3

GPT-3: Language Models are Few-Shot Learners
15,573
star
10

swarm

Educational framework exploring ergonomic, lightweight multi-agent orchestration. Managed by OpenAI Solution team.
Python
14,944
star
11

evals

Evals is a framework for evaluating LLMs and LLM systems, and an open-source registry of benchmarks.
Python
14,607
star
12

tiktoken

tiktoken is a fast BPE tokeniser for use with OpenAI's models.
Python
11,374
star
13

triton

Development repository for the Triton language and compiler
C++
11,077
star
14

DALL-E

PyTorch package for the discrete VAE used for DALL·E.
Python
10,760
star
15

shap-e

Generate 3D objects conditioned on text or images
Python
10,285
star
16

spinningup

An educational resource to help anyone learn deep reinforcement learning.
Python
8,587
star
17

openai-node

The official Node.js / Typescript library for the OpenAI API
TypeScript
7,703
star
18

universe

Universe: a software platform for measuring and training an AI's general intelligence across the world's supply of games, websites and other applications.
Python
7,385
star
19

jukebox

Code for the paper "Jukebox: A Generative Model for Music"
Python
7,326
star
20

point-e

Point cloud diffusion for 3D model synthesis
Python
5,777
star
21

consistency_models

Official repo for consistency models.
Python
5,725
star
22

guided-diffusion

Python
5,000
star
23

plugins-quickstart

Get a ChatGPT plugin up and running in under 5 minutes!
Python
4,133
star
24

transformer-debugger

Python
4,003
star
25

retro

Retro Games in Gym
C
3,361
star
26

glide-text2im

GLIDE: a diffusion-based text-conditional image synthesis model
Python
3,277
star
27

glow

Code for reproducing results in "Glow: Generative Flow with Invertible 1x1 Convolutions"
Python
3,016
star
28

mujoco-py

MuJoCo is a physics engine for detailed, efficient rigid body simulations with contacts. mujoco-py allows using MuJoCo from Python 3.
Cython
2,586
star
29

openai-quickstart-node

Node.js example app from the OpenAI API quickstart tutorial
JavaScript
2,534
star
30

weak-to-strong

Python
2,445
star
31

improved-gan

Code for the paper "Improved Techniques for Training GANs"
Python
2,218
star
32

human-eval

Code for the paper "Evaluating Large Language Models Trained on Code"
Python
2,204
star
33

improved-diffusion

Release for Improved Denoising Diffusion Probabilistic Models
Python
2,102
star
34

roboschool

DEPRECATED: Open-source software for robot simulation, integrated with OpenAI Gym.
Python
2,064
star
35

image-gpt

Python
2,025
star
36

consistencydecoder

Consistency Distilled Diff VAE
Python
1,933
star
37

finetune-transformer-lm

Code and model for the paper "Improving Language Understanding by Generative Pre-Training"
Python
1,929
star
38

gpt-2-output-dataset

Dataset of GPT-2 outputs for research in detection, biases, and more
Python
1,908
star
39

pixel-cnn

Code for the paper "PixelCNN++: A PixelCNN Implementation with Discretized Logistic Mixture Likelihood and Other Modifications"
Python
1,856
star
40

openai-quickstart-python

Python example app from the OpenAI API quickstart tutorial
1,685
star
41

requests-for-research

A living collection of deep learning problems
HTML
1,625
star
42

multi-agent-emergence-environments

Environment generation code for the paper "Emergent Tool Use From Multi-Agent Autocurricula"
Python
1,590
star
43

gpt-discord-bot

Example Discord bot written in Python that uses the completions API to have conversations with the `text-davinci-003` model, and the moderations API to filter the messages.
Python
1,569
star
44

evolution-strategies-starter

Code for the paper "Evolution Strategies as a Scalable Alternative to Reinforcement Learning"
Python
1,504
star
45

generating-reviews-discovering-sentiment

Code for "Learning to Generate Reviews and Discovering Sentiment"
Python
1,491
star
46

neural-mmo

Code for the paper "Neural MMO: A Massively Multiagent Game Environment for Training and Evaluating Intelligent Agents"
Python
1,463
star
47

prm800k

800,000 step-level correctness labels on LLM solutions to MATH problems
Python
1,371
star
48

openai-dotnet

The official .NET library for the OpenAI API
C#
1,352
star
49

openai-assistants-quickstart

OpenAI Assistants API quickstart with Next.js.
TypeScript
1,350
star
50

sparse_attention

Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"
Python
1,347
star
51

maddpg

Code for the MADDPG algorithm from the paper "Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments"
Python
1,284
star
52

Video-Pre-Training

Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online Videos
Python
1,280
star
53

openai-openapi

OpenAPI specification for the OpenAI API
1,235
star
54

lm-human-preferences

Code for the paper Fine-Tuning Language Models from Human Preferences
Python
1,185
star
55

following-instructions-human-feedback

1,129
star
56

universe-starter-agent

A starter agent that can solve a number of universe environments.
Python
1,086
star
57

dalle-2-preview

1,044
star
58

InfoGAN

Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"
Python
1,029
star
59

grade-school-math

Python
1,005
star
60

procgen

Procgen Benchmark: Procedurally-Generated Game-Like Gym-Environments
C++
1,005
star
61

supervised-reptile

Code for the paper "On First-Order Meta-Learning Algorithms"
JavaScript
955
star
62

blocksparse

Efficient GPU kernels for block-sparse matrix multiplication and convolution
Cuda
941
star
63

automated-interpretability

Python
896
star
64

random-network-distillation

Code for the paper "Exploration by Random Network Distillation"
Python
861
star
65

kubernetes-ec2-autoscaler

A batch-optimized scaling manager for Kubernetes
Python
849
star
66

summarize-from-feedback

Code for "Learning to summarize from human feedback"
Python
833
star
67

large-scale-curiosity

Code for the paper "Large-Scale Study of Curiosity-Driven Learning"
Python
800
star
68

multiagent-competition

Code for the paper "Emergent Complexity via Multi-agent Competition"
Python
761
star
69

imitation

Code for the paper "Generative Adversarial Imitation Learning"
Python
643
star
70

deeptype

Code for the paper "DeepType: Multilingual Entity Linking by Neural Type System Evolution"
Python
633
star
71

mlsh

Code for the paper "Meta-Learning Shared Hierarchies"
Python
588
star
72

iaf

Code for reproducing key results in the paper "Improving Variational Inference with Inverse Autoregressive Flow"
Python
499
star
73

mujoco-worldgen

Automatic object XML generation for Mujoco
Python
489
star
74

safety-gym

Tools for accelerating safe exploration research.
Python
421
star
75

vdvae

Repository for the paper "Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images"
Python
407
star
76

coinrun

Code for the paper "Quantifying Transfer in Reinforcement Learning"
C++
390
star
77

robogym

Robotics Gym Environments
Python
389
star
78

weightnorm

Example code for Weight Normalization, from "Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks"
Python
357
star
79

atari-py

A packaged and slightly-modified version of https://github.com/bbitmaster/ale_python_interface
C++
354
star
80

openai-security-bots

Python
351
star
81

openai-gemm

Open single and half precision gemm implementations
C
335
star
82

vime

Code for the paper "Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks"
Python
331
star
83

safety-starter-agents

Basic constrained RL agents used in experiments for the "Benchmarking Safe Exploration in Deep Reinforcement Learning" paper.
Python
312
star
84

ebm_code_release

Code for Implicit Generation and Generalization with Energy Based Models
Python
311
star
85

CLIP-featurevis

code for reproducing some of the diagrams in the paper "Multimodal Neurons in Artificial Neural Networks"
Python
294
star
86

gym-http-api

API to access OpenAI Gym from other languages via HTTP
Python
292
star
87

gym-soccer

Python
289
star
88

sparse_autoencoder

Python
287
star
89

robosumo

Code for the paper "Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments"
Python
283
star
90

web-crawl-q-and-a-example

Learn how to crawl your website and build a Q/A bot with the OpenAI API
Jupyter Notebook
268
star
91

phasic-policy-gradient

Code for the paper "Phasic Policy Gradient"
Python
245
star
92

EPG

Code for the paper "Evolved Policy Gradients"
Python
240
star
93

orrb

Code for the paper "OpenAI Remote Rendering Backend"
C#
235
star
94

miniF2F

Formal to Formal Mathematics Benchmark
Objective-C++
202
star
95

atari-reset

Code for the blog post "Learning Montezuma’s Revenge from a Single Demonstration"
Python
183
star
96

spinningup-workshop

For educational materials related to the spinning up workshops.
TeX
181
star
97

train-procgen

Code for the paper "Leveraging Procedural Generation to Benchmark Reinforcement Learning"
Python
170
star
98

human-eval-infilling

Code for the paper "Efficient Training of Language Models to Fill in the Middle"
Python
162
star
99

openai-go

The official Go library for the OpenAI API
Go
145
star
100

dallify-discord-bot

Example code for using OpenAI’s NodeJS SDK with discord.js SDK to create a Discord Bot that uses Slash Commands.
TypeScript
139
star